
1

Algorithm-Hardware Co-design of Split-Radix
Discrete Galois Transformation for KyberKEM

Guangyan Li, Donglong Chen, Gaoyu Mao, Wangchen Dai, Abdurrashid Ibrahim Sanka,
Ray C.C. Cheung, Senior Member, IEEE

Abstract—KyberKEM is one of the final round key encapsulation mechanisms in the NIST post-quantum cryptography competition.
Number theoretic transform (NTT), as the computing bottleneck of KyberKEM, has been widely studied. Discrete Galois Transformation
(DGT) is a variant of NTT that reduces transform length into half but requires more multiplication operations than the latest NTT
algorithm in theoretical analysis. This paper proposes the split-radix DGT, a novel DGT variant utilizing the split-radix method, to reduce
the computing complexity without compromising the transform length. Specifically, for length-128 polynomial, the split-radix DGT
algorithm saves at least 10% multiplication operations compared with the latest NTT algorithm in theoretical analysis. Furthermore, we
proposed a unified split-radix DGT processor with the dedicated stream permutation network for KyberKEM and implemented it on the
Xilinx Artix-7 FPGA. The processor achieves at least 49.4% faster transformation and 65.3% faster component-wise multiplication, with
at most 87% and 32% LUT-NTT area-time product and LUT-CWM area-time product, compared with the state-of-the-art polynomial
multipliers in KyberKEM with the same BFU setting on similar platforms. Lastly, we designed a highly efficient KyberKEM architecture
using the proposed split-radix DGT processor. The implementation results on Artix-7 FPGA show significant performance
improvements over the state-of-the-art KyberKEM designs.

Index Terms—Discrete Galois transform, Split-radix, Negative wrapped convolution, Post-Quantum cryptography, Key encapsulation
mechanism, Hardware, FPGA

✦

1 INTRODUCTION

THE rapid development of quantum computers and
quantum algorithms such as Shor’s algorithm [1] threat-

ens the security basis of conventional public-key cryptosys-
tems such as RSA and ECC. The urgent need to replace
the conventional public-key cryptosystem with quantum-
resistant cryptography, or the so-called post-quantum cryp-
tography (PQC), drives the attention of researchers and
standards organizations. In July 2020, the round 3 can-
didates of the NIST PQC competition were announced,
and four public-key algorithms were disclosed as the final-
ists. The finalists include three lattice-based cryptography
(i.e. CRYSTALS-KyberKEM [2], NTRU [3], SABER [4]), and
one code-based cryptography (i.e. Classic McEliece [5]). As
stated by the NIST, the PQC competition would evaluate
the submissions by different criteria, including security, cost,
and algorithm & implementation characteristics [6].

To evaluate the PQC candidates on the criteria of cost,
there have been lots of published articles comparing dif-
ferent implementations of candidates. Within the supple-
mentary functions of the proposed PQC schemes, the most
time-consuming parts are the polynomial multiplication
and the hash functions. The recent hardware and soft-
ware/hardware co-design works offload the polynomial

G. Li, G. Mao, A.I. Sanka, and R.C.C. Cheung are with the Department
of Electrical Engineering, City University of Hong Kong, Kowloon Tong,
Hong Kong SAR, China. E-mail: guangyali5-c@my.cityu.edu.hk, gaoyumao3-
c@my.cityu.edu.hk, iasanka2-c@my.cityu.edu.hk, and cccheung@ieee.org.
D. Chen is with the Faculty of Science and Technology, BNU-HKBU United
International College, Zhuhai, China. E-mail: donglongchen@uic.edu.cn.
W. Dai is with the Zhejiang Lab, Hangzhou, China. E-mail:
w.dai@my.cityu.edu.hk.
Corresponding author: Donglong Chen.

multiplication and the hash functions to dedicated hardware
accelerators [7], [8], [9], [10].

The polynomial multiplication is computationally inten-
sive. Recent solutions to polynomial multiplication could be
in quasi-linear time O(nlogn) using the number-theoretic
transforms (NTTs) when we treat the polynomial multiplica-
tion as a discrete convolution problem. It is remarkable that
the polynomial multiplication over different polynomial
rings should be treated carefully. For instance, we could
treat the polynomial multiplication over Zq[x]/ ⟨xn + 1⟩
as negative wrapped convolution between the vectors
of the coefficients of input polynomials. The polynomi-
als ring Zq[x]/ ⟨xn + 1⟩ are widely used in many lattice-
based cryptography algorithms because of the high comput-
ing efficiency. For instance, the cryptosystems CRYSTALS-
KyberKEM [2], SABER [4], and Luybashevsky’s public-key
cryptosystem [11], [12] employ the aforementioned polyno-
mial rings in their cryptography algorithm.

1.1 Related Works

There are several works concerning the implementation
of Crystals-KyberKEM. Software implementation of Ky-
berKEM has been studied in [13], [14], [15]. Botros et al.
proposed a memory-efficient high-speed optimization of
KyberKEM on ARM Cortex-M4 core in [13]. Furthermore,
the side-channel defence of KyberKEM was treated in [14],
which is also based on ARM Cortex-M4 core. Likewise,
Nguyen et al. [15] studied the software optimization of
KyberKEM on a high-performance platform.

Pure hardware implementations of KyberKEM have
been published in [9], [16], [17], [18], [19]. The work [9]

2

is a compact hardware implementation of KyberKEM for
the third round submission in NIST PQC competition on
Xilinx Artix-7 FPGA platform. The work [16] proposed an
implementation for both FPGA and ASIC design with an
improvement in polynomial sampling cores. Dang et al. pro-
posed the high-performance implementation of KyberKEM,
NTRU and Saber in [17] with a novel Polynomial Vector
Multiplication Unit (PVMU) design. The work of Jati et al.
[18] concerns the side-channel protection for KyberKEM in
pure hardware.

On the other hand, software/hardware co-design imple-
mentations of KyberKEM have been published in [20], [21],
[22], [23]. Banerjee et al. proposed an ASIC crypto-processor
based on RISC-V architecture in [20] supporting Crystals-
KyberKEM, Crystals-Dilithium, FrodoKEM, NewHope, and
qTesla for the second round submission in NIST PQC com-
petition, which was extended to FPGA platform in [21].
The work [22] proposed the integration of instruction sets
for finite field arithmetic operations in a RISC-V proces-
sor, supporting PQC algorithms including KyberKEM and
NewHope. The work [23] integrated the vectorized modular
arithmetic operations and NTT computation in a RISC-V
processor and presents the ASIC and FPGA implementation
result, supporting PQC algorithms including KyberKEM,
Saber and NewHope.

We also consider the literature improving the polyno-
mial multiplication in hardware. Several works focusing
on the implementation of the NTT computation has been
published in [10], [24], [25], [26], [27], [28]. Zhang et al. [10]
proposed a low-complexity NTT/INTT algorithm, absorb-
ing the pre-process and post-process into NTT and INTT,
respectively. In [24], a parallel architecture is proposed for
high-speed NTT design. The works [25], [26], [27], [28] pro-
posed NTT-based polynomial multiplication architectures
for KyberKEM on FPGA.

1.2 Our Contributions
This paper proposes a highly efficient hardware design of
KyberKEM by using the split-radix DGT to replace the NTT
in general design. In particular, the main contributions are
as follows:

1) We propose a novel negative wrapped convolution
(NWC) via split-radix DGT algorithm, including
split-radix DGT, split-radix IDGT and component-
wise multiplication (CWM) by applying the split
radix nature into DGT and IDGT [29]. This method
could reduce the transform length into half and
requires fewer butterfly operations and transform
stages compared to the NWC via NTT. Besides, this
method saves 10% modular multiplication opera-
tions for length-128 polynomial compared with the
NTT algorithm in [10].

2) We propose a dedicated stream permutation net-
work and the corresponding scheduling plan for
the split-radix DGT to squeeze out the scheduling
bubbles and hence enable a fully pipelined working
mode. The proposed stream permutation network
could reduce 25% clock cycles compared to the
state-of-the-art NTT in KyberKEM scheduling plan
in [9].

TABLE 1
Mathematical Notations

Notation Definition
Regular lower-case letter (a) Element in Zq

Lower-case letter with bar (ā) Element in GF (q2)

Upper-case letter (A/Â) Polynomial in Zq in normal/transform domain
Upper-case letter with bar (Ā/ ˆ̄A) Polynomial in GF (q2) in normal/transform domain

Bold lower-case letter (a/â) Polynomial vector in normal/transform domain
Bold upper-case letter (A/Â) Polynomial matrix in normal/transform domain

Sans-serif upper-case letter (NTT) Help function
Ai The i-th entity in A

aT /AT Transpose of vector/matrix
Â ◦ B̂/a ◦ b/a ◦ B Component-wise multiplication

3) We propose a compact and unified butterfly unit
(BFU) supporting split-radix DGT, IDGT and CWM,
along with efficient multiplier over GF (q2) to
achieve a high-throughput NWC. The unified BFU
could compute DGT/IDGT/CWM in KyberKEM in
384/384/132 cycles with one BFU setting, respec-
tively. The proposed architecture could achieve at
least 49.4% faster transforming, and 65.3% faster
CWM with 87% LUT-NTT area-time product (ATP)
and 32% LUT-CWM ATP compared with the results
of the state-of-the-art designs of NWC in KyberKEM
with one BFU setting on similar platforms.

4) We propose a highly efficient KyberKEM - Split
Radix DGT architecture. The optimization tech-
nique, i.e., bandwidth matching, as well as just-in-
time principle, is used to design a optimized and
constant time architecture for KyberKEM, which
significantly improves the ATP and outperforms the
state-of-the-arts.

2 PRELIMINARY

Table 1 provides the mathematical notations used in
this paper. We use Rq to denote the polynomial ring
Zq[x]/ ⟨xn + 1⟩ defined over the field Zq , where q is a prime
integer.

2.1 CRYSTALS-KyberKEM

CRYSTALS-KyberKEM [2] is a key-encapsulation mecha-
nism with Adaptive Chosen Ciphertext Attack (IND-CCA2)
security. The security of KyberKEM is based on the hard-
ness of the learning-with-errors problem in module lattices
(i.e. MLWE problem [30]). To construct a IND-CCA2-secure
KEM, CRYSTALS-Kyber uses the slightly tweaked Fu-
jisaki–Okamoto (FO) transform [2], [31] to transfer a Chosen
Plaintext Attack (IND-CPA) secure Public-Key Encryption
(PKE) scheme, which is called as CRYSTALS-KyberPKE.
The parameter sets for CRYSTALS-KyberKEM is shown in
Table 2. The key generation, encryption, and decryption
of the CRYSTALS-KyberPKE are defined as follows, with
following the definition of the help functions CBD, Parse,
Compress, NTT, and INTT in [2]:

• KeyGen(·): Key generation samples s and e from cen-
tered binomial distribution (CBD), and Â from uni-
form distribution (Parse). The public key pk = (ρ, t̂)
and secret key sk = ŝ are returned where ρ is the
random seed and t̂ = Â ◦ ŝ + ê.

3

TABLE 2
Parameter sets for CRYSTALS-KyberKEM in the Third Round

Submission [2]

Algorithm NIST
Level

Parameter set
n k q (η1, η2) (du,dv)

Kyber-512-CCA 1 256 2 3,329 (3,2) (10,4)
Kyber-768-CCA 3 256 3 3,329 (2,2) (10,4)
Kyber-1024-CCA 5 256 4 3,329 (2,2) (11,5)

• Enc(pk,M): Encryption samples r, e1 and E2 from
CBD, and Â from Parse. The ciphertext ct =
(Compress(u),Compress(V)) is returned where u =

INTT(Â
T ◦ r̂) + e1 and V = INTT(̂t

T ◦ r̂) + E2 +M .
• Dec(sk, ct): Decryption returns the recovered message

M = Compress(V − INTT(ŝT ◦ û)) where u and V
are decompressed from ct.

2.2 NTT and Inverse NTT (INTT)
NTT is a variant of DFT by changing the complex number
field into finite field Zq . Given a polynomial of length n,
the length-n NTT (noted as NTTn) is defined as Âj =
NTTn(A)j =

∑n−1
i=0 Aiω

ij
n mod q, where 0 ≤ j < n, ωn

(mod q) denotes the primitive n-th root of unit over Zq

or twiddle factor of length-n NTT. ωn (mod q) exists when
q ≡ 1 (mod n).

The inverse NTT (INTT) could be performed by replac-
ing the twiddle factor of length-n NTT ωn (mod q) by ω−1

n

(mod q), and multiplying the scalar factor n−1 (mod q)
after the summation. The length-n INTT (noted as INTTn)
is defined as Ai = INTTn(Â)i = n−1

∑n−1
j=0 Âjω

−ij
n mod q,

where 0 ≤ i < m.

2.3 Polynomial Multiplication via NTT
According to [32], polynomial multiplication over Rq could
be solved efficiently by negative wrapped convolution
(NWC) when the prime parameter q satisfies 2n|(q − 1).
NWC would introduce pre-processing before NTT and
post-processing after INTT. In order to reduce the com-
puting complexity of NWC, Zhang et al. [10] proposed
low-complexity NTT and INTT algorithms (noted as LC
NTT/INTT) by merging the pre and post processing into
NTT and INTT without additional modular multiplication.
Based on [10], the number of modular multiplications in the
LC NTT/INTT algorithms is n

2 log2n.
Starting from the second-round submission of Crystals-

KyberKEM, the parameter set (n, q) is selected as
(256, 3329) as shown in Table 2. Given that n | (q − 1) but
2n ∤ (q − 1), the aforementioned NWC via NTT could not
be applied directly. A variant of NTT proposed by [33] is
adopted to apply the NWC in Crystals-Kyber KEM. Such a
variant is based on the observation that, when polynomial
F could be factored into a product F = GH over the finite
field Zq , we have an isomorphism by the Chinese remainder
theorem:

Zq[x]/(F) ∼= Zq[x]/(G)× Zq[x]/(H). (1)

Since x256 + 1 =
∏127

i=0(x
2 − ω2i+1

256) given the primitive 256-
th roots of unity ω256, the definition of NTT working on
Z3329[x]/

〈
x256 + 1

〉
(noted as NTT3329

256) is given by:

NTT3329
256 (A)i = A(x) mod (x2 − ω2i+1

256)

= x
127∑
j=0

A2j+1ω
(2i+1)j
256 +

127∑
j=0

A2jω
(2i+1)j
256

= xÂ2i+1 + Â2i,

(2)

where 0 ≤ i < 128 and Â2i+1 =
∑127

j=0 A2j+1ω
(2i+1)j
256 , and

Â2i =
∑127

j=0 A2jω
(2i+1)j
256 . Now both Â2i+1 and Â2i could

be solved by the length-128 low-complexity NTT. As for
the inverse transform, we could use two length-128 low-
complexity INTTs to reconstruct A(x) from Â2i+1 and Â2i.
The NWC working on Z3329[x]/

〈
x256 + 1

〉
could also be

solved as

INTT3329
256 (NTT3329

256 (a) ◦ NTT3329
256 (b)). (3)

Such component-wise multiplication is defined as:

A(x) ◦B(x) mod (x2 − ω2i+1
256)

= (xÂ2i+1 + Â2i)(xB̂2i+1 + B̂2i)

mod (x2 − ω2i+1
256),

(4)

where 0 ≤ i < 128. Thus, polynomial multiplication over
Z3329[x]/

〈
x256 + 1

〉
is performed by four length-128 low-

complexity NTTs, one length-128 component-wise multipli-
cation, and two length-128 low-complexity INTTs.

2.4 Negative Wrapped Convolution via DGT
Consider A(x) ∈ Rq . Let m = n

2 and z = xm =
√
xn ≡√

−1 (mod q). Then, we rewrite A(x) as:

A(x) = An−1x
n−1 +An−2x

n−2 + · · ·+A1x
1 +A0

=(An−1x
m +Am−1)x

m−1 + · · ·+ (Amxm +A0)

=(An−1z +Am−1)x
m−1 + · · ·+ (Amz +A0)

=Ām−1x
m−1 + · · ·+ Ā1x

1 + Ā0,

(5)

where Āi = (Ai+mz + Ai), 0 ≤ i < m. It is notable that
the Āi ∈ Zq[z]/

〈
z2 + 1

〉
, which is isomorphic to GF (q2).

Given 0 ≤ i, j < m, some arithmetic operations over
Zq[z]/

〈
z2 + 1

〉
are defined as:

Addition: Āi + Āj = (Ai+m +Aj+m)z + (Ai +Aj);
Multiplication: Āi ◦ Āj = (AiAj −Ai+mAj+m)z+

(AiAj+m +Ai+mAj).
(6)

We could define the ζm ∈ Zq[z]/
〈
z2 + 1

〉
, such that

ζmm = z. Such ζm exists when 4m|(q − 1) [29]. We ob-
served that

{
ζ4i+1
m ,∀0 ≤ i < m

}
would be a set of solutions

of the equation xm = z on Zq[z]/
〈
z2 + 1

〉
, indicating{

ζ4i+1
m ,∀0 ≤ i < m

}
fulfills the following properties:

Symmetry: ζ
4(i+m

2)+1
m = ζ4i+1

m ζ2mm = (−1)ζ4i+1
m ;

Periodicity: ζ4(i+m)+1
m = ζ4i+1

m ζ4mm = ζ4i+1
m ;

Scalability: ζ4(i/k)+1
m/k = ζ

4(i/k)
m/k ζ1m/k = ζ4i+k

m ;

Semi-symmetry: ζ
4(i+m

4)+1
m = ζ4i+1

m ζmm = ζ4i+1
m z;

(7)

where k is a power-of-two integer that is smaller than m.
Thus, we define the set of twiddle factors in Discrete Galois
Transform (DGT) as

{
ζ4i+1
m ,∀0 ≤ i < m

}
. For a length-m

4

polynomial Ā, whose entities Āi ∈ Zq[z]/
〈
z2 + 1

〉
, the

definition of length-m DGT (noted as DGTm) would be
ˆ̄Aj = DGTm(Ā)j =

∑m−1
i=0 (Āiζ

i
m)ζ4jim , where 0 ≤ j < m.

Similarly, the definition of length-m IDGT (noted as IDGTm)
would be IDGTm(ˆ̄A)i = m−1ζ−i

m

∑m−1
j=0 (ˆ̄Ajζ

−4ji
m), where

0 ≤ i < m. According to [29], one can perform the DGTm

and IDGTm algorithms similar to the classic NTT and INTT,
by replacing the arithmetic operations in Zq with arithmetic
operations in Zq[z]/

〈
z2 + 1

〉
defined in Equation 6, which

means m
2 log2m + m and m

2 log2m + 2m multiplications in
Zq[z]/

〈
z2 + 1

〉
are needed in DGTm and IDGTm, respec-

tively [10]. Recall that the addition in Zq[z]/
〈
z2 + 1

〉
in-

volves no modular multiplication while each multiplication
in Zq[z]/

〈
z2 + 1

〉
includes three modular multiplications

using the Karatsuba method. The number of modular mul-
tiplication in DGTm and IDGTm would be 3m

2 log2m + 3m
and 3m

2 log2m+ 6m, respectively.
According to [29], the length-n NWC could also be

solved via DGT as

IDGTm(DGTm(Ā) ◦ DGTm(B̄)), (8)

where m = n
2 . Thus, length-n NWC could be performed

as two length-m DGTs after pre-processing, one length-m
point-wise multiplication, and one length-m IDGT follow-
ing by post-processing.

3 PROPOSED SPLIT-RADIX DGT AND IDGT
In this section, we propose to integrate the split radix
and decimation-in-time (DIT) into the low-complexity DGT
algorithm, while using split radix and decimation-in-
frequency (DIF) to derive IDGT. These novel split-radix
DGT/IDGT algorithms inherit the advantages of small mul-
tiplication number from split radix nature and the short
transformation length from DGT/IDGT, which enable low
complexity NWCs.

3.1 Proposed Split Radix DGT

The low-complexity DGT is derived in the split radix [34]
and decimation-in-time (DIT) [35] in this subsection.
Given a length-m polynomial Ā, whose entities Āi ∈
Zq[z]/

〈
z2 + 1

〉
. We would start the derivation by splitting

the summation of DGT into three groups according to the
index of ˆ̄A as follows:

ˆ̄Aj =

m
4 −1∑
i=0

Ā4i+1(ζ
4j+1
m)4i+1

+

m
2 −1∑
i=0

Ā2i(ζ
4j+1
m)2i +

m
4 −1∑
i=0

Ā4i+3(ζ
4j+1
m)4i+3

= ζ4j+1
m

m
4 −1∑
i=0

Ā4i+1(ζ
4j+1
m/4)i +

m
2 −1∑
i=0

Ā2i(ζ
4j+1
m/2)i

+ ζ3(4j+1)
m

m
4 −1∑
i=0

Ā4i+3(ζ
4j+1
m/4)i,

(9)

where 0 ≤ j < m. We could decompose the degree-m DGT
into two degree-m4 DGTs and one degree-m2 DGT. Namely,

we set
∑m

2 −1
i=0 Ā2i(ζ

4j+1
m/2)i as ˆ̄Wj ,

∑m
4 −1
i=0 Ā4i+1(ζ

4j+1
m/4)i as

ˆ̄Xj , and
∑m

4 −1
i=0 Ā4i+3(ζ

4j+1
m/4)i as ˆ̄Yj , then

ˆ̄Aj =
ˆ̄Wj + ζ4j+1

m
ˆ̄Xj + ζ3(4j+1)

m
ˆ̄Yj . (10)

For 0 ≤ j < m
4 , we rewrite Equation 10 in terms of ˆ̄Wj ,

ˆ̄Wj+m
4

, ˆ̄Xj , and ˆ̄Yj as

ˆ̄Aj =
ˆ̄Wj + (ζ4j+1

m
ˆ̄Xj + ζ3(4j+1)

m
ˆ̄Yj),

ˆ̄Aj+m
4
= ˆ̄Wj+m

4
+ z(ζ4j+1

m
ˆ̄Xj − ζ3(4j+1)

m
ˆ̄Yj),

ˆ̄Aj+m
2
= ˆ̄Wj − (ζ4j+1

m
ˆ̄Xj + ζ3(4j+1)

m
ˆ̄Yj),

ˆ̄Aj+ 3m
4

= ˆ̄Wj+m
4
− z(ζ4j+1

m
ˆ̄Xj − ζ3(4j+1)

m
ˆ̄Yj).

(11)

The Equation 11 represents the asymmetric DIT butterfly
computation for split-radix DGT. We should note there are
two boundary cases at m = 2 and m = 4. When m = 2, the
DGT problem ˆ̄Aj would be solved as

ˆ̄A0 = Ā0 + Ā1ζ2,

ˆ̄A1 = Ā0 + Ā1ζ
5
2 = Ā0 − Ā1ζ2.

(12)

And when m = 4, the DGT problem ˆ̄Aj is solved as

ˆ̄A0 = (Ā0 + Ā2ζ
2
4) + (Ā1ζ4 + Ā3ζ

3
4),

ˆ̄A1 = (Ā0 − Ā2ζ
2
4) + z(Ā1ζ4 − Ā3ζ

3
4),

ˆ̄A2 = (Ā0 + Ā2ζ
2
4)− (Ā1ζ4 + Ā3ζ

3
4),

ˆ̄A3 = (Ā0 − Ā2ζ
2
4)− z(Ā1ζ4 − Ā3ζ

3
4).

(13)

Figure 1 shows the data flow and the butterfly of a 8-
point split-radix DGT. The details of the proposed split-
radix DIT DGT are shown in Algorithm 1. We observed the
split-radix DGT butterfly in Equation 11 is asymmetric, and
different butterflies would be processed at boundary cases
m = 2, 4. It is recommended to decompose the asymmet-
ric butterfly operations as well as the butterfly operations
in boundary cases into the similar butterfly operators. In
the proposed algorithm, four butterfly operators shown in
Figure 1 would be applied, namely DGT 1, DGT 0-1, DGT
0-2, and DGT 0-3. Additionally, the order sequence of each
operators could be pre-computed and stored into an integer
SEQ. We also proposed the method to generate the SEQ
as well as the corresponding control logic to select the target
operator, as shown in Algorithm 1. The help function brl(i)
can generate the bit reversal of integer i ranging from 0 to
(2l−1). For example, br4(1011b) = 1101b. The help function
scramblel(A) permutes the length-2l polynomial A, moving
the i-th term to index brl(i).

3.2 Proposed Split Radix IDGT
The low complexity IDGT is derived in the split radix
[34] and decimation-in-frequency (DIF) nature [35]. Given
a length-m polynomial ˆ̄A, one have Ā = IDGTm(ˆ̄A). We
define W̄i = Ā2i for 0 ≤ i < m

2 , X̄i = Ā4i+1 and Ȳi = Ā4i+3

for 0 ≤ i < m
4 . We would start the derivation of W̄i by

splitting the summation of IDGT into two groups according
to the index of ˆ̄A as follows:

Āi = m−1ζ−i
m

m
2 −1∑
j=0

(
ˆ̄Aj +

ˆ̄Aj+m
2
ζ
−4im

2
m

)
ζ−4ji
m , (14)

5

Fig. 1. Dataflow and the proposed butterfly operators of low-complexity split-radix DGT and IDGT. TW1 and TW2 are twiddle factors described in
Algorithm 1 and 2

For 0 ≤ i < m
2 , we substitute Equation 14 into W̄i = Ā2i,

and apply the scalability property and substituting (ζ4mm) ≡
1 on Zq[z]/

〈
z2 + 1

〉
as follows:

W̄i = m−1ζ−2i
m

m
2 −1∑
j=0

(
ˆ̄Aj +

ˆ̄Aj+m
2
ζ−4mi
m

)
ζ2×(−4ij)
m

= (
m

2
)−1ζ−i

m
2

m
2 −1∑
j=0

 ˆ̄Aj +
ˆ̄Aj+m

2

2

 ζ−4ij
m
2

= (
m

2
)−1ζ−i

m
2

m
2 −1∑
j=0

ˆ̄Wjζ
−4ij
m
2

,

(15)

with defining ˆ̄Wj =
ˆ̄Aj+

ˆ̄Aj+m
2

2 . We find that Equation
15 is equivalent to the length-m2 IDGT of ˆ̄wj . Thus, the
subproblem of length m

2 is constructed.
To construct the other two subproblems of length-m4 ,

namely X̄i and Ȳi for 0 ≤ i < m
4 , again we start the

derivation from the definition of IDGT with post-processing,
but splitting the summation to four groups according to the
index of ˆ̄A. For 0 ≤ i < m,

Āi = m−1ζ−i
m

m
4 −1∑
j=0

(
ˆ̄Aj +

ˆ̄Aj+m
4
ζ
−4im

4
m

+ ˆ̄Aj+m
2
ζ
−4im

2
m + ˆ̄Aj+ 3m

4
ζ
−4i 3m

4
m

)
ζ−4ji
m .

(16)

For 0 ≤ i < m
4 , we substitute Equation 16 into X̄i = Ā4i+1,

and apply the scalability property and substituting (ζ4mm) ≡

1 on Zq[z]/
〈
z2 + 1

〉
, that is:

X̄i = Ā4i+1 = (
m

4
)−1ζ−i

m
4

m
4 −1∑
j=0

[
1

2
(ˆ̄Aj − ˆ̄Aj+m

2
)

+
−z

2
(ˆ̄Aj+m

4
− ˆ̄Aj+ 3m

4
)

]
ζ
−(4j+1)
m

2
ζ−4ji

m
4

.

(17)

Defining that

ˆ̄Xj =

[
1

2
(ˆ̄Aj − ˆ̄Aj+m

2
) +

−z

2
(ˆ̄Aj+m

4
− ˆ̄Aj+ 3m

4
)

]
ζ
−(4j+1)
m

2
,

(18)

one could simplify Equation 17 as

X̄i = (
m

4
)−1ζ−i

m
4

m
4 −1∑
j=0

ˆ̄Xjζ
−4ji
m
4

, (19)

We find that Equation 19 are equivalent to the length-m4
IDGT of ˆ̄X . Thus, the subproblem of length m

4 is con-
structed. The subproblem Ȳi = Ā4i+3 for 0 ≤ i < m

4 could
also be constructed similar to Equation 17-19. In summary,
the split-radix DIF IDGT butterfly operations are defined as

ˆ̄Wj =
1

2
(ˆ̄Aj +

ˆ̄Aj+m
2
),

ˆ̄Wj+m
4
=

1

2
(ˆ̄Aj+m

4
+ ˆ̄Aj+ 3m

4
),

ˆ̄Xj =

[
1

2
(ˆ̄Aj − ˆ̄Aj+m

2
) +

−z

2
(ˆ̄Aj+m

4
− ˆ̄Aj+ 3m

4
)

]
ζ
−(4j+1)
m

2
,

ˆ̄Yj =

[
1

2
(ˆ̄Aj − ˆ̄Aj+m

2
)− −z

2
(ˆ̄Aj+m

4
− ˆ̄Aj+ 3m

4
)

]
ζ
−3(4j+1)
m

2
,

(20)

6

Algorithm 1 Iterative Split-Radix DIT DGT Algorithm
without Pre-processing
Input: Given the parameter set n, q,m = n/2, ζm ∈

Zq[z]/
〈
z2 + 1

〉
. Let Ā be a folded vector of length

m composed of the original polynomial (of length n)
coefficients. Elements of Ā = (Ā0, Ā1, ..., Ām−1).

Output: ˆ̄A = DGTm(Ā) = (ˆ̄A0,
ˆ̄A1, ...,

ˆ̄Am−1).
1: ˆ̄A := Ā
2: SEQ := 0 ▷ SEQ could be pre-computed
3: for i = 0 to log2m− 1 do
4: SEQ := SEQ+ (−1)i(22

logm−i−2 − 1)
5: end for
6: for s = 0 to log2m− 1 do
7: l := 2s

8: d := m/(2l)
9: for i = 0 to l − 1 do

10: TW1 := ζ
[4brlog2m(i2log2m−s)+1] d2
m

11: TW2 := ζ
[4brlog2m(i2log2m−s)+1] 3d2
m

12: for j = 0 to d− 1 do
13: if SEQ[(d−j)≪s] = 1 then
14: ▷ Check the ((d− j) ≪ s)-th bit of SEQ

15: u := (TW1)
ˆ̄A2id+j

16: t := (TW2)
ˆ̄A2id+j+d ▷ DGT 1

17: else if s = 0 then
18: u := ˆ̄A2id+j

19: t := (ζ
m/2
m) ˆ̄A2id+j+d ▷ DGT 0-1

20: else if i mod 2 = 1 then
21: u := ˆ̄A2id+j

22: t := (+z) ˆ̄A2id+j+d ▷ DGT 0-2
23: else
24: u := ˆ̄A2id+j

25: t := ˆ̄A2id+j+d ▷ DGT 0-3
26: end if
27: ˆ̄A2id+j := u+ t; ˆ̄A2id+j+d := u− t
28: end for
29: end for
30: end for
31: ˆ̄A := scramblelog2m(ˆ̄A)

32: return ˆ̄A

We should also note the two boundary cases at m = 2, 4.
When m = 2, the IDGT problem Āi would be solved as

Ā0 =
1

2
(ˆ̄A0 +

ˆ̄A1)

Ā1 =
1

2
(ˆ̄A0 +

ˆ̄A1ζ
−4
2)ζ−1

2 =
1

2
(ˆ̄A0 − ˆ̄A1)ζ

−1
2 .

(21)

And when m = 4, the IDGT problem is solved as

Ā0 =
1

2
(
ˆ̄A0 +

ˆ̄A2

2
+

ˆ̄A1 +
ˆ̄A3

2
),

Ā1 =
ζ−1
4

2
(
ˆ̄A0 − ˆ̄A2

2
− z

ˆ̄A1 − ˆ̄A3

2
),

Ā2 =
ζ−2
4

2
(
ˆ̄A0 +

ˆ̄A2

2
−

ˆ̄A1 +
ˆ̄A3

2
),

Ā3 =
ζ−3
4

2
(
ˆ̄A0 − ˆ̄A2

2
+ z

ˆ̄A1 − ˆ̄A3

2
).

(22)

Algorithm 2 Iterative Split-Radix DIF IDGT Algorithm
without Post-processing
Input: Given the parameter set n, q,m = n/2, ζm ∈

Zq[z]/
〈
z2 + 1

〉
. Let ˆ̄A be a folded vector of length

m composed of the original polynomial (of length n)
coefficients. Elements of ˆ̄A = (ˆ̄A0,

ˆ̄A1, ...,
ˆ̄Am−1).

Output: Ā = IDGTm(ˆ̄A) = (Ā0, Ā1, ..., Ām−1).
1: Ā := scramblelog2m(ˆ̄A)
2: SEQ := 0 ▷ SEQ could be pre-computed
3: for i = 0 to log2m− 1 do
4: SEQ := SEQ+ (−1)i(22

logm−i−2 − 1)
5: end for
6: for s = log2m− 1 to 0 do
7: l := 2s

8: d := m/(2l)
9: for i = 0 to d− 1 do

10: for j = i to m− 1 step 2d do

11: TW1 := ζ
(−1)[4brlog2m(j2log2m−1−s/d)+1] d2
m

12: TW2 := ζ
(−1)[4brlog2m(j2log2m−1−s/d)+1] 3d2
m

13: if SEQ[(d−i)≪s] = 0 then
14: ▷ Check the ((d− j) ≪ s)-th bit of SEQ
15: u := Āj + Āj+d

16: t := Āj − Āj+d

17: if s = 0 then ▷ IDGT 0-2
18: Āj :=

u
2 ; Āj+d := ζ

m/2
m · t

2
19: else ▷ IDGT 0-1
20: Āj :=

u
2 ; Āj+d := t

2
21: end if
22: else ▷ IDGT 1
23: u := Āj + (−z) · Āj+d

24: t := Āj − (−z) · Āj+d

25: Āj := TW1 · u
2 ; Āj+d := TW2 · t

2
26: end if
27: end for
28: end for
29: end for
30: return Ā

Figure 1 shows the data flow and the butterfly of a 8-
point IDGT. The details of the split-radix DIF IDGT are
shown in Algorithm 2. Help functions scramblel and brl
are defined in Section 3.1. Similar to DGT, we also need to
decompose the butterfly operations as well as the boundary
cases m = 2, 4 into multiple computing operators. In the
proposed IDGT algorithm, three butterfly operators shown
in Figure 1 would be applied, namely DIF 1, DIF 0-1, DIF 0-2.
We observed that the proposed DGT and IDGT could share
the pre-computed integer(SEQ), thus the memory overhead
for operator selection would be reduced.

3.3 Complexity Analysis on Split radix DGT/IDGT

To analyze the computation cost of split-radix DIT DGT, one
could set up the recurrent equations based on the asymmet-
ric split-radix butterflies and the two boundary cases. The
number of modular multiplication and modular addition in
a length-m DGT is defined as M(m) and A(m), respectively.
Given the size of each sub-problems in Equation 11 is m/4,
one could find that m/2 additions over Zq[z]/

〈
z2 + 1

〉
and

7

m/2 multiplications over Zq[z]/
〈
z2 + 1

〉
are needed in the

first stage of split-radix DIT DGT butterfly computation.
The second stage of the DGT butterfly computation in-
volved m additions over Zq[z]/

〈
z2 + 1

〉
but no multipli-

cation. In summary, 3m/2 additions over Zq[z]/
〈
z2 + 1

〉
and m/2 multiplications over Zq[z]/

〈
z2 + 1

〉
are required

to compute the length-m/4 sub-problem of split-radix DIT
DGT. Recall that each addition over Zq[z]/

〈
z2 + 1

〉
is sep-

arated into 2 modular additions, and each multiplication
over Zq[z]/

〈
z2 + 1

〉
involves 5 modular additions and 3

modular multiplications when using Karatsuba algorithm.
Accordingly, 11m/2 modular additions and 3m/2 modu-
lar multiplications in GF (q) are required for the length-
m/4 sub-problem of split-radix DIT DGT. Recall that when
m = 2, the DGT problem consists of 2 additions over
Zq[z]/

〈
z2 + 1

〉
and 1 multiplication over Zq[z]/

〈
z2 + 1

〉
as

shown in Equation 12. Accordingly, 9 modular additions
and 3 modular multiplications in GF (q) are required when
m = 2. Similarly, 31 modular additions and 9 modular
multiplications are required when m = 4.

Similar to the split-radix DIT DGT, we would also set
up the recurrence equations based on the asymmetric split-
radix DIF IDGT butterfly and the two boundary cases (i.e.
Equation 20, 21, and 22) to analyze the computation cost.
Observing that the split-radix DIF IDGT butterfly and the
two boundary cases requiring the same number of multipli-
cation and addition over Zq[z]/

〈
z2 + 1

〉
as in DGT, the cost

of the split-radix DIT DGT and the split-radix DIF IDGT can
be represented in terms of modular multiplications M(m)
and modular additions A(m) by the following recurrences:

M(m) =


M(m2) + 2M(m4) + 3m/2, if m > 4,

9, if m = 4,

3, if m = 2.

(23)

A(m) =


A(m2) + 2A(m4) + 11m/2, if m > 4,

31, if m = 4,

9, if m = 2,

(24)

such that,

M(m) = mlog2m+
m

3
− (−1)log2m

3
,

A(m) =
11m

3
log2m+

5m

9
− 5(−1)log2m

9
.

(25)

Having the above analysis, Table 3 compares the modu-
lar multiplication and modular addition of low complexity
NTT/INTT [10], the classic DGT/IDGT [29] and the pro-
posed split-radix DGT/IDGT for given problem sizes n. In
terms of modular multiplication, the proposed split-radix
DGT/IDGT has the smallest number of modular multipli-
cations among the three algorithms. Comparing with the
classic DGT and IDGT, split-radix DGT and IDGT reduce
47.3% and 57.8% of modular multiplications, respectively,
when the polynomial size n = 128 (i.e. DGT/IDGT size of
m = n

2 = 64).
The split-radix DGT and IDGT could also save 9.6% of

modular multiplications compared to the low-complexity
NTT and INTT. Similarly, the split-radix DGT/IDGT needs
one less stage than the low-complexity NTT/INTT. The rea-
son is that a length-n NTT/INTT is equivalent to a length-n2

DGT/IDGT (which means the transform size is halved in
DGT/IDGT compared to NTT/INTT). Additionally, as DIT
is applied in DGT and DIF is used in IDGT, no bit-reordering
on the coefficients are required.

The split-radix DGT and IDGT could be applied to solve
the polynomial multiplication on Zq[x]/ ⟨xn + 1⟩ when
2n|(q − 1) and n is a power of 2, and it is a more effi-
cient variant comparing with the classic DGT/IDGT. The
split-radix DGT and IDGT could also provide a shorter
transform length and need one less stage comparing with
the other NTT/INTT algorithms. Thus, the proposed split-
radix DGT/IDGT is competitive in the design of high-
performance NWC architecture.

4 ARCHITECTURE DESIGN OF SPLIT RADIX
DGT/IDGT
As mentioned in Section 2.1, the CRYSTALS-KyberKEM
adopted the parameter set (n, q) as (256,3329), which would
divide the length-256 NTT into two length-128 NTTs of
odd-index terms and the even-index terms, respectively.
Considering using DGT to replace the length-128 NTT in
CRYSTALS-KyberKEM, the pack operation (as shown in
Equation 5) is required to pack the odd-index terms and
the even-index terms from Zq into Zq[z]/

〈
z2 + 1

〉
. Therefore

the DGT in CRYSTALS-KyberKEM consists of two length-
64 DGTs for the odd-index terms and the even-index terms
(noted as odd polynomial and even polynomial in this
paper, respectively). Additionally, we found the available
twiddle factor ζm in KyberKEM, as ζ64 = 1+ 737 ∗ z, based
on the method proposed in [29].

The overall architecture of the split-radix DGT/IDGT is
shown in Figure 2. In order to cut down the hardware over-
head on implementing the NWC via split-radix DGT/IDGT,
we decided to integrate the operation of the split-radix DGT,
the split-radix IDGT and the component-wise multiplication
into a unified Split Radix DGT/IDGT (SRDGT) module. In
the proposed module, a unified DGT butterfly unit (BFU), a
twiddle factor memory ZETA ROM, a stream permutation
network (SPN), and a control unit are involved.

4.1 Unified SRDGT Butterfly Unit

The unified SRDGT BFU is designed to compute DGT and
IDGT in iterative nature [36]. As shown in Figure 3, a
pipelined architecture is designed to increase the through-
put of the unified DGT BFU module. When the pipeline
is fulfilled, the proposed unified DGT BFU could read and
write two data points if working under DGT/IDGT mode.
When the BFU is switched to compute CWM, it could
support read and write of four data points simultaneously.

The proposed unified SRDGT BFU is designed to sup-
port nine working modes to implement the SRDGT butterfly
shown in Figure 1 in a compact way. The 6-bits control
signal sel and its corresponding mode is shown in Table 4
and Figure 3. Figure 4 illustrates the details of the active
data path and the operators for each mode. Among the
nine working modes of the unified DGT BFU, four are for
the iterative DGT (DGT 0-1, DGT 0-2, DGT 0-3, and DGT 1
shown in Figure 1), three are for the iterative IDGT (IDGT 0-
1, IDGT 0-2, and IDGT 1 shown in Figure 1), and two are for

8

TABLE 3
The comparison on the number of modular operations between low complexity NTT/INTT [10], classic DGT/IDGT [29] and the split-radix

DGT/IDGT for given problem size n.

n
Relative # of Modular Addition Relative # of Modular Multiplication

LC NTT/INTT1* DGT/IDGT2 SRDGT/SRIDGT3* LC NTT/INTT1 DGT/IDGT2 SRDGT/SRIDGT3

128 0.62/0.74 1.42/1.64 1.00/1.02 1.11/1.11 1.90/2.37 1.00/1.00
256 0.61/0.72 1.39/1.58 1.00/1.02 1.09/1.09 1.84/2.25 1.00/1.00
512 0.60/0.72 1.37/1.54 1.00/1.02 1.08/1.08 1.80/2.16 1.00/1.00

1024 0.59/0.71 1.36/1.50 1.00/1.02 1.07/1.07 1.77/2.09 1.00/1.00
1 LC NTT/INTT represents the low complexity NTT/INTT [10].
2 DGT/IDGT represents the classic DGT/IDGT [29].
3 SRDGT/SRIDGT represents the split-radix DGT/IDGT proposed in this work.
* In the LC INTT [10] and the SRIDGT, the half operations would be introduced to avoid post processing. Such

half operation could be preformed by a modular addition and an bit shift, which would be expected to increase
1.25 or 0.44 modular addition to each LC INTT butterfly operation or SRIDGT butterfly operation, respectively.
The modular addition caused by half operations are included in the Table above.

Fig. 2. Overall architecture of Split Radix DGT/IDGT (control unit is not
shown). Extensions to k parallel BFUs are demonstrated, where k is
noted as scalability coefficient. The index of the BFU determines the
route, ranging from 0 to k−1. Mem 0, Mem 1 and Mem 2 are instantiated
by dual-port RAM. ZETA ROM is instantiated by dual-port ROM.

CWM (CWM 0, and CWM 1). The modes for iterative DGT
and IDGT need to be switched during the computation, as
described in Algorithms 1 and 2. The SEQ would also be
used to control the mode switch. Since the computation of
CRYSTALS-KyberKEM only involves length-64 DGT/IDGT,
the SEQ would be a 32-bit constant integer 0X0000FF0D.

The CWM is defined as

(xˆ̄r2i+1 + ˆ̄r2i) mod (x2 − ζ
4br(i)+1
64)

≡(xˆ̄a2i+1 + ˆ̄a2i)(x
ˆ̄b2i+1 +

ˆ̄b2i),
(26)

By using the Karatsuba-based CWM based on [9], the num-
ber of multiplications over Zq[z]/

〈
z2 + 1

〉
could be four:

ˆ̄r2i = ˆ̄a2i
ˆ̄b2i + ˆ̄a2i+1

ˆ̄b2i+1 · ζ4br(i)+1
64 ,

ˆ̄r2i+1 = (ˆ̄a2i + ˆ̄a2i+1)(
ˆ̄b2i +

ˆ̄b2i+1)

− (ˆ̄a2i
ˆ̄b2i + ˆ̄a2i+1

ˆ̄b2i+1).

(27)

TABLE 4
Nine modes for our proposed unified BFU with the setup signal ’sel’.

Symbol ’+’ demotes coresponding operator is in use, while ’−’ denotes
it is idle at the moment.

Mode sel[5:0] Mul 0 Mul 1 Rotator
DGT 0-1 101010 − + −
DGT 0-2 100010 − − −
DGT 0-3 100000 − − +
DGT 1 101110 + + −

IDGT 0-1 001011 + + −
IDGT 0-2 000011 − − −
IDGT 1 001101 + + +
PWM 0 001110 + + −
PWM 1 011110 + + −

The Karatsuba-based CWM would be computed by us-
ing two working modes in the proposed unified SRDGT
BFU, namely CWM 0 and CWM 1. We map the computation
of Equation 27 to the data flow of BFU as:

CWM 0: s0 = ˆ̄a2i + ˆ̄a2i+1, s1 = ˆ̄b2i +
ˆ̄b2i+1,

m0 = ˆ̄a2i
ˆ̄b2i,m1 = ˆ̄a2i+1

ˆ̄b2i+1

CWM 1: ˆ̄r2i = m0 +m1 · ζ4br(i)+1
64 ,

ˆ̄r2i+1 = s0 · s1 − (m0 +m1).

(28)

The detailed dataflow and working mechanism of the uni-
fied SRDGT BFU are shown in Figure 2 and Table 4.

4.2 Multiplier over Zq[z]/
〈
z2 + 1

〉
Notice that each multiplication in Equation 27 is multi-
plication over Zq[z]/

〈
z2 + 1

〉
. Therefore, a multiplier over

Zq[z]/
〈
z2 + 1

〉
is required to compute this operation.

The DSP48E1 slice in Xilinx FPGA consists of one mul-
tiplier and two adders. Since all the operators in DSP48E1
is programmable by fully utilizing these high performance
hardware resources, one could design a high throughput
multiplier over Zq[z]/

〈
z2 + 1

〉
. In this work, the Karatsuba

algorithm is adopt, given s̄ = (a)z + b, t̄ = (c)z + d, the
multiplication over Zq[z]/

〈
z2 + 1

〉
is rearranged and shown

as:

s̄ ◦ t̄ = [a(d− c) + c(a+ b) mod q]z

+ [b(c+ d)− c(a+ b) mod q].
(29)

9

Fig. 3. The detailed block diagram of the proposed unified SRDGT BFU. Each output ports (out A, out B, out C, out D) are illustrated separately,
with input ports (in a, in b, in c, in d, in e, in f). Control signal ’sel’ in different operations are presented in Table 4.

Fig. 4. Active data path diagram for DGT, IDGT and CWM of the proposed unified BFU. All the registers in the proposed architecture are waived
in this diagram. The mode DGT 0-1, DGT 0-2, and DGT 0-3 in Table 4 are working on ’DGT 0’ data path. The mode IDGT 0-1 and IDGT 0-2 are
working on ’IDGT 0’ data path. And the mode DGT 1, IDGT 1 , CWM 0, and CWM 1 are working on ’DGT 1’, ’IDGT 1’, ’CWM 0’, and ’CWM 1’ data
path, respectively. In ’DGT 0’, ’DGT 1’, ’IDGT 0’, and ’IDGT 1’, we map the twiddle factor data points (TW1 and TW2) in Algorithm 1 and 2 to the
port in e and in f, respectively. And in ’CWM 0’ and ’CWM 1’, we map the data points in Equation 28 to the corresponding ports. The data points
are noted in brackets. It is notable there are only 4 unique data points reading required in ’CWM 0’.

As can be seen from Equation 29, there are three multipli-
cations, four additions, two subtractions , and two modular
reductions in each multiplication over Zq[z]/

〈
z2 + 1

〉
. We

propose mapping the whole computations in Equation 29
into three DSP48E1, as shown in Figure 5, to reduce the
wiring delay between the logics and the DSP cores. The
proposed architecture of Zq[z]/

〈
z2 + 1

〉
multiplier achieves

a working frequency of 299MHz on Xilinx Artix-7 platform.

4.3 Stream Permutation Network and Fully Pipelined
Scheduling
The proposed stream permutation network (SPN) and the
data scheduling plan are designed to support two main
goals for single SRDGT BFU: 1) SPN should satisfy the
bandwidth requirement of the SRDGT BFU. 2) the schedule

of SPN should ensure a fully pipelined working mode of
DGT/IDGT.

The above goals could be achieved based on three im-
portant observations from Figure 4 as follows:

1) The SRDGT BFU provides 4 active input ports in
‘DGT’ and ‘IDGT’ modes, 6 active input ports in
‘CWM 0’ mode and 5 active input ports in ‘CWM 1’
mode.

2) The 2 input data points from ZETA ROM (i.e., the
twiddle factors TW1 and TW2) use specific datap-
ath and would not depend on SPN.

3) The pair of input ports that have the same data
input (i.e., the port pairs (in a, in f) and (in d, in e)
in ‘CWM 0’) can share one Reading operation from
SPN.

10

Fig. 5. Proposed architecture of multiplier over Zq [z]/
〈
z2 + 1

〉
with three DSP48E1 slices. The rearranged multiplication over
Zq [z]/

〈
z2 + 1

〉
are described in Equation 29.

Based on the above observations, SPN should support
2/2/4 data points reading per cycle in DGT/IDGT/CWM
mode, respectively. Similarly, SPN should also support
2/2/4 data points writing per cycle in DGT/IDGT/CWM
mode, respectively.

In order to satisfy the SPN data width requirement, three
true dual-port BRAM (namely MEM 0, MEM 1, and MEM
2) as shown in Figure 2 are placed to work in parallel.
This design enables a maximum 6 data points read/write
simultaneously.

When SRDGT BFU works in DGT/IDGT mode, the
two read ports of one BRAM and the two write ports of
another BRAM are enabled. As shown in Figure 6, this
design enables 2 data points read and 2 data points write
simultaneously. Note that the coefficients of the intermedi-
ate polynomial are stored in the memory in order, and each
coefficient occupies one address in the BRAM. Such con-
figuration allows us to use the memory address generating
method stated in Algorithm 1 and 2 straightforwardly.

When SRDGT BFU works in CWM mode, there are 4
data points send to BFU and 4 data points output from BFU
in each cycle. We enable the read ports of MEM 0 port b and
MEM 1 port a, and the write ports of MEM 0 port a, MEM 1
port b, MEM 2 port a, and MEM 2 port b, as shown in Figure 7.
As the data input port CWM in also supports 2 data points
input, the bandwidth requirement of SPN is fulfilled.

The main challenge of implementing a fully pipelined
iterative DGT/IDGT lies in the data dependency between
adjacent transform stages. The proposed fully pipelined
scheduling plan is specific for the DGT/IDGT in Ky-
berKEM, consisting of two length-64 DGTs. We intersperse
the two length-64 DGTs and process them alternately to
eliminate the data dependency between adjacent transform
stages. Figure 6 provides a detailed example of memory
scheduling for DGT in KyberKEM in the first two stages.
This fully pipelined scheduling plan is also extended to
compute IDGTs in KyberKEM.

We analyze and compare the cycle count of the fully
pipelined SRDGT BFU and the state-of-the-art LC NTT in
[9]. The SRDGT BFU requires 2×64/2× log264 = 384 cycles
for the length-64 DGTs of odd and even polynomials, and
no pipelined bubble exists. Calculating the same length-128
NTT, LC NTT [9] requires 128/2 × log2128 = 448 cycles

of odd and even polynomials, with additional 64 cycles
of pipelined bubbles to write the results back to BRAMs.
The above comparison demonstrates the advantages of the
proposed halved transform length DGT, data scheduling
plan, and fully pipelined architecture.

4.4 Extensions to multiple BFUs

In KyberKEM, a higher security level requires more DGT
computation tasks. In order to support multiple tasks si-
multaneously, we designed the extension to multiple BFUs,
as shown in Figure 2. If we note the scalability coefficient as
k, each memory block in SPN will be expanded to k×24 bit
wide, corresponding to k BFUs operating simultaneously
for k independent DGT/IDGT/CWM tasks. Meanwhile,
since the bit width of the DGT data points is a multiple
of 8, our extended Split Radix DGT architecture can use the
byte write function of the Xilinx BRAM instances to specify
a storage location for the inputting data. Thus, the extended
Split Radix DGT architecture accepts a single polynomial
or k polynomials that need to be operated simultaneously
as inputs, improving the flexibility of the schedule when
applied in the upper-level modules.

5 HARDWARE ARCHITECTURE OF KYBERKEM
KyberKEM involves key generation, encapsulation, and de-
capsulation. Interested readers could refer to [2] for the
details of these algorithms. In this work, hardware archi-
tecture is designed and shown in Figure 8 to support these
KyberKEM algorithms. The Centered Binomial Distribu-
tion (CBD) module and Reject Sampling module perform
sampling in the functions CBDη and Parse, respectively.
The Compress and Decompress modules are responsible for
the Compress and Decompress of ciphertext, respectively.
The Encode module could transfer the data format from
the byte array to the coefficients of a polynomial, and the
Decode module transfers the coefficients of a polynomial
back to the byte array. The Encode and Decode modules
are modified from the open-source code of [9]. The Keccak
module computes the functions of SHAKE128, SHAKE256,
SHA3-256, and SHA3-512. The functionality of the Keccak
module is expanded from the open-source code [37], and
it would take 24 clock cycles to execute 24 rounds in the
function KECCAK-f.

We used the bandwidth matching carrying through the
architecture to increase the area time efficiency as [9] did. In
addition, we divide the entire structure into three parts, with
different data bit widths for different parts. The advantage
of setting bandwidth matching in different parts is the
overall hardware latency, and the consumed resources can
trade off based on the security level. The data bandwidth
is 64 bits, 48 bits, and 48 × k bits in the I/O part, the
sample/serialization part, and the DGT part, respectively,
where k is the security level parameter of KyberKEM and
equals to the scalability parameter in the Split Radix DGT
architecture defined in Section 4.4. The I/O part includes the
input and output FIFOs, working as the input/output buffer
of the architecture. In the sample/serialization part, the byte
array from input FIFO would be sent to the Keccak module
to sample and the Decode module to de-serialize into 48-bit

11

Fig. 6. Scheduling of memory operations for SRDGT in KyberKEM. Two sources are acceptable: DGT in or pre-stored in Mem 0 and Mem 1. When
the input polynomial coming from DGT in, the operation box In stream∗ are enabled and the Read∗ are disabled. When the input polynomial
stored in Mem 0 and Mem 1, the operation boxes Read∗ are enabled and the In stream∗ are disabled. Detailed scheduling of memory operations
in the first two stages are also shown below. The white boxes represents Read operations, and the black boxes represents Write operations. The
address of data is presented inside the boxes if applicable.

Fig. 7. Scheduling of memory operations for the proposed CWM. The
data points in Equation 28 are noted on the BRAM ports in the working
modes ’CWM 0’ and ’CWM 1’.

Fig. 8. The architecture of KyberKEM - Split Radix DGT hardware.
(control units, the input and output FIFOs are not shown)

width. Compress would accept the 48-bit-width data from
Encode and serialize it to 64-bit width data for the output
FIFO. RAM stores the sampling polynomials from CBD and
Reject Sampling and the decompressed polynomials from
Decompress. The byte write function of the Xilinx BRAM
instance would be used in the RAM module to facilitate the
flexibility of the write bandwidth. When k polynomials for

DGT/IDGT/CWM are ready, the SRDGT module will load
these k polynomials and process them simultaneously.

In this work, we also applied the just-in-time strategy
as [38] to minimize the memory footprint. The just-in-time
strategy means that the sampling polynomials are generated
based on the requirement of the succeeding computation.
For example, we applied the strategy for the data generated
by Reject Sampling. The Reject Sampling module samples
the output from the Keccak module under the uniform
distribution. The output of the Reject Sampling is stored
in the RAM module, including Â in key generation and Â

T

in encryption, and would be passed to the SRDGT module
until k polynomials are ready. Each of these polynomials in
the cases would be used only once. Thus, the memory space
could be overwritten by the following k polynomials based
on the just-in-time strategy, and the memory space reserved
would be reduced from k2 polynomials to k polynomials.

6 IMPLEMENTATION RESULTS AND COMPARISONS

The proposed hardware design of KyberKEM-SRDGT has
been synthesized and implemented using Vivado 2019.2
design suite on Xilinx XC7A200 (Artix-7) FPGA device, with
all the building blocks implemented in hardware.

6.1 Split-Radix DGT Module Results and Comparisons

The hardware resource utilization and the latency specifica-
tion of the proposed SRDGT module are shown in Table 5.
The detailed cycle counts of NTT (DGT), INTT (IDGT), and
component-wise multiplication (CWM) are also compared
with state-of-the-art implementations. We only enclosed the
k = 1 case of our design for a fair comparison since the pro-
posed design with larger k is designed to process k indepen-
dent polynomials simultaneously. The measurement of the
efficiency of the hardware implementations is based on the
area-time product (ATP), which is computed by the product
of LUT, BRAM, and DSP resources and the computing time.
We analyzed the ATP for NTT and CWM for a detailed

12

TABLE 5
FPGA Implementation Result for the Proposed Split Radix DGT Core and Comparison with State-of-the-Art (n=256)

Work Method BFU Area Freq[MHz] Cycles[CCs] NTT/CWM ATP ratio1

#LUTs #FFs #DSPs #BRAMs NTT INTT CWM LUT BRAM DSP

[13]C SW - - - - - 100 7725 9347 27873 -/- -/- -/-
[22]A HW/SW - - - - - 59 6868 6367 2395 -/- -/- -/-
[21]A HW/SW - 2983 0 0 11 25 1289 - - 59.7/- 78.4/- 0.0/-
[23]Z HW/SW 2 2908 170 9 0 - 1935 1930 - -/- -/- -/-
[18]†, A HW 2 230 175 0 1 312 570 570 - 0.2/- 0.3/- 0.0/-
[28]†, A HW 2×2 801 717 4 2 222 324 324 - 0.5/- 0.4/- 0.6/-
[27]†, A HW 1 479 472 1 2 246 4108 - - 3.1/- 4.6/- 1.7/-
[25]†, A HW 2 609 640 2 4 257 490 490 - 0.5/- 1.1/- 0.4/-
[16]A HW 1 360 145 3 2 115 940 1203 1289 1.1/4.6 2.3/9.0 2.5/10.1
[16]A HW 2 737 290 6 4 115 474 602 1289 1.2/9.3 2.3/18.0 2.6/20.3
[9]A HW 2 1737 1167 2 3 161 512 576 256 2.1/3.1 1.3/1.9 0.7/1.0
[26]A HW 1 948 325 1 2.5 190 904 904 647 1.8/3.6 1.6/3.4 0.5/1.0
[26]A HW 4 2543 792 4 9 182 232 233 167 1.3/2.6 1.6/3.3 0.5/1.1
[26]A HW 16 9508 2684 16 35 172 69 71 47 1.5/2.9 1.9/3.8 0.7/1.3

This work(k=1)A HW 1 1603 2004 6 4.5 239 384 384 132 1.0/1.0 1.0/1.0 1.0/1.0
† Do not support component-wise multiplication (CWM).
C Implemented on Cortex-M4 platform.
Z Implemented on Zynq-7000 FPGA platform.
A Implemented on Artix-7 FPGA platform.
1 NTT ATP ratio is the normalized product of FPGA resources and the NTT total time,

and CWM ATP ratio is the normalized product of FPGA resources and the CWM total time, by setting this work as baseline.

comparison since only the hardware architectures of [9],
[16], [26], and the proposed design support NTT/INTT and
CWM. Notably, we do not include the comparison of the
total latency and ATP for the polynomial multiplication in
Table 5, since we noted the KyberKEM would not use the
complete polynomial multiplication (including 2 NTTs, 1
CWM, and 1 INTT) during the key generation, encapsula-
tion and decapsulation [2]. For simplicity, the ATP ratios are
provided instead of the original ATP indices.

Due to the careful placement of registers and the usage of
high-speed DSP48E1 slides in Artix-7 FPGA, the proposed
SRDGT module could operate at a frequency of 239MHz.
Another merit of the SRDGT algorithm and the proposed
architecture is the relatively small cycle count. Specifically,
the DGT, IDGT and CWM computations require 384, 384,
and 132 cycles, respectively, for length-256 polynomial mul-
tiplication. And the latency of DGT, IDGT and CWM are 1.6
µs, 1.6 µs, and 0.55 µs, respectively.

In comparison to the SW implementation in work
[13], the cycle count of the SRDGT architecture achieves
a speedup of 20.1×, 24.3×, 211.2× for NTT(DGT),
INTT(IDGT), and CWM, respectively. In comparison to the
HW/SW implementations in [21], [22], [23], the SRDGT
hardware achieves more than 32.4× speedup for NTT (DGT)
computation. Besides, [21] and [23] use 1.86× and 1.81×
more LUTs than our design in a similar FPGA platform,
respectively.

The state-of-the-art HW implementations are divided
into two groups depending on whether the CWM is sup-
ported. Among these works, the hardware in [9], [16] and
[26] support CWM. [16] has a higher NTT ATP ratio in LUT,
BRAM, and DSP compared to our work, indicating the high
efficiency of our architecture. The proposed hardware still
has lower cycle counts because the transform size is halved,
and only six stages are required in our split radix DGT and
IDGT, with the full-pipelined working nature provided by
our SPN. Xing et al. [9] also presented a unified butterfly

unit for NTT, INTT, and CWM. However, taking advantage
of the novel split-radix DGT algorithm, the cycle count of
this work is only 384/512 = 75% of the counts in [9] for
NTT (DGT), and only 132/256 = 51.6% of the counts in [9]
for CWM. Our work outperforms the NTT ATP and CWM
ATP compared to [9] except for the NTT-DSP ATP because
of the compact design in the unified BFU of [9]. The designs
in [26] propose three different configurations to trade off
the hardware resources and speed. Our architecture outper-
forms all these configurations concerning the LUT-NTT and
BRAM-NTT ATP, while their work could have a better DSP-
NTT ATP. Besides, our architecture outperforms the CWM
ATP ratios for LUT, BRAM, and DSP compared to [26].

We use the clock cycle counts of NTT (DGT) and INTT
(IDGT), unlike directly using the ATP of the NTT and CWM
when comparing our work with [18], [25], [27], [28] for
fairness since these works do not support CWM while our
work uses additional hardware resources for CWM. Only
[28] among the previous works listed above consumes fewer
clock cycles than the proposed architecture. The authors
apply the KRED reduction algorithm into a 2-layer merged
NTT, which relies on the special form of the prime. We
would explore the 2-layer merged DGT butterfly unit in our
future work.

6.2 KyberKEM Results and Comparisons

Table 6 shows the hardware resource utilization and the
latency of the proposed KyberKEM hardware system. Dif-
ferent security level parameter sets, including Kyber-512-
CCA, Kyber-768-CCA, and Kyber-1024-CCA, were imple-
mented, and the results were compared with the state-of-
the-art implementations concerning speed and hardware
resource utilization. The speed of the hardware is obtained
by taking the cycle counts and total time, including the key
generation, encapsulation, and decapsulation. For simplic-
ity, the total cycle ratio is provided in Table 6 using our
results as the baseline. The overall efficiency of the hardware

13

TABLE 6
FPGA Implementation Result for the Proposed KyberKEM-Split Radix DGT and Comparison with State-of-the-Art.

Work Method Platform Area Freq
[MHz]

Cycles[kCCs] Total
time [µs]

Total
cycle ratio

ATP ratio1

#LUTs #FFs #DSPs #BRAMs KG Enc Dec LUT BRAM DSP
Kyber-512-CCA

[13] SW Cortex-M4 - - - - 24 499 634 597 72083.3 227.6 - - -
[22] HW/SW Artix-7 2K 2K 5 34 59 710 971 870 43237.3 335.7 201.0 4577.8 504.9
[21] HW/SW Artix-7 15K 3K 11 14 25 75 132 142 13960.0 45.9 485.9 608.6 358.6
[23] HW/SW Zynq-7000 24K 11K 21 32 - 150 193 205 - 72.1 - - -
[16] HW Artix-7 18K 5K 6 15 115 4 7 10 182.6 2.8 7.6 8.5 2.6
[17] HW Artix-7 9K 9K 4 4.5 220 2.2 3.2 4.5 45.2 1.3 1.0 0.6 0.4

[9] - server HW Artix-7 7K 5K 2 3 161 3.8 5 6.7 96.9 2.1 1.7 0.9 0.5
This work HW Artix-7 12K 14K 12 9 213 1.7 2.4 3.5 35.7 1.0 1.0 1.0 1.0

Kyber-768-CCA
[13] SW Cortex-M4 - - - - 24 947 1113 1059 129958.3 311.9 - - -
[21] HW/SW Artix-7 15K 3K 11 14 25 112 178 191 19240.0 48.1 429.4 435.1 246.9
[23] HW/SW Zynq-7000 24K 11K 21 32 - 273 326 340 - 93.9 - - -
[16] HW Artix-7 16K 6K 9 16 115 7 10 14 269.6 3.1 6.4 7.0 2.8
[17] HW Artix-7 11K 10K 6 6.5 220 2.6 3.7 4.9 51.3 1.1 0.8 0.5 0.4

[9] - server HW Artix-7 7K 5K 2 3 161 6.3 7.9 10 150.4 2.4 1.7 0.7 0.4
This work HW Artix-7 14K 17K 18 13 210 2.1 3.4 4.5 47.6 1.0 1.0 1.0 1.0

Kyber-1024-CCA
[13] SW Cortex-M4 - - - - 24 1525 1732 1653 204583.3 350.7 - - -
[22] HW/SW Artix-7 2K 2K 5 34 59 2203 2619 2429 122898.3 517.9 227.9 4059.2 373.1
[21] HW/SW Artix-7 15K 3K 11 14 25 149 223 241 24520.0 43.8 340.5 333.5 163.8
[23] HW/SW Zynq-7000 24K 11K 21 32 NA 350 405 425 - 84.3 - - -
[16] HW Artix-7 16K 6K 12 17 112 10 14 18 375.0 3.0 5.6 6.2 2.7
[17] HW Artix-7 12K 11K 8 8.5 220 3.6 4.8 5.8 64.6 1.0 0.7 0.5 0.3

[18] - RB HW Artix-7 7K 4K 2 5.5 258 43.8 48.8 57.2 580.6 10.7 3.8 3.1 0.7
[18] - CB HW Artix-7 5K 2K 2 6.5 250 1148 1236 1172 14224.0 254.0 69.5 89.8 17.3

[9] - server HW Artix-7 7K 5K 2 3 161 9.4 11.3 13.9 214.9 2.5 1.5 0.6 0.3
This work HW Artix-7 16K 19K 24 15 204 3.9 4.5 5.6 68.6 1.0 1.0 1.0 1.0
1 ATP ratio is the normalized product of FPGA resources and the total time by setting this work as baseline.

architecture is mainly measured by the ATP ratio, obtained
by the product of LUT, BRAM, and DSP resources and
the total time (noted as LUT-Time ATP, BRAM-Time ATP,
and DSP-Time ATP, respectively), and normalized using our
results as the baseline.

In the proposed KyberKEM architecture with SRDGT
module, all the dimensions k defined in KyberKEM spec-
ification are supported. The data bandwidth of our imple-
mentation is set to 64 bits. Our design achieves more than
227.6× speedup when compared with [13], which is soft-
ware implementation on ARM Cortex-M4. Compared with
the HW/SW co-design in [21], our architecture achieves at
least 43.8× speedup and 340.5/333.5/163.8× smaller LUT-
Time ATP, BRAM-Time ATP, and DSP-Time ATP, respec-
tively, among all the security level of KyberKEM.

We also compare our work with the related pure hard-
ware implementations. For all the security levels of Ky-
berKEM, the proposed hardware obtains at least 1.0×, 2.1×,
2.8×, and 10.7× speedup compared with [9], [16], [17], [18],
respectively. Compared with [17], our architecture utilizes
1.0/0.6/0.4× ATP in Kyber-512-CCA, but only 0.7/0.5/0.3×
ATP in Kyber-1024-CCA, in terms of LUT-Time ATP, BRAM-
Time ATP, and DSP-Time ATP, respectively. The reason
could be that our KyberKEM architecture could benefit
more from the Split Radix DGT module at a lower security
level. Nevertheless, at a higher security level, the schedule
bottleneck would be Keccak and Reject Sample, but not the
Split Radix DGT. This fact will cause the total cycle gap
between our design and [17] to decrease gradually, namely
from 1.3× to 1.0× total cycles from Kyber-512-CCA to
Kyber-1024-CCA. More efficient Keccak and Reject Sample
architectures are necessary to further reduce the cycle count,
which would be part of our future works. In terms of ATP,
the design in [9] accomplished at least 1.5× larger LUT-

Time ATP, but at most 33.4% smaller BRAM-Time ATP and
83.9% smaller DSP-Time ATP than our work. The small ATP
index in BRAM and DSP is due to their highly compact Ky-
berKEM architecture and scheduling design. [16] reported
at least 5.6/6.2/2.7× larger ATP compared to us, in terms
of LUT-Time ATP, BRAM-Time ATP, and DSP-Time ATP,
respectively. Furthermore, [18] reported 3.8/3.1/0.7× ATP
compared to us, in terms of LUT-Time ATP, BRAM-Time
ATP, and DSP-Time ATP, respectively.

7 CONCLUSION

The development of quantum computers threatens the se-
curity of the conventional public-key cryptography algo-
rithms. CRYSTALS-KyberKEM is one of the leading al-
gorithms in the ongoing NIST Post-Quantum Cryptogra-
phy (PQC) competition. As a lattice-based cryptographic
scheme, the efficiency of CRYSTALS-KyberKEM is depen-
dent on the polynomial multiplication over Rq or equiva-
lently NWC. In this paper, we explored the implementation
of DGT with the split-radix method, providing a higher
level of parallelism compared to the LC NTT [10] and less
computational complexity compared to classic DGT [29].
The proposed architecture of split-radix DGT module could
support DGT, IDGT and CWM specific for KyberKEM,
and outperforms the state-of-the-arts on NWC modules.
In the meantime, KyberKEM architecture with split-radix
DGT module is proposed supporting all the security levels
of KyberKEM. The proposed architecture could increase
performance and hardware efficiency than the state-of-the-
arts, specifically only 35.7µs, 47.6µs, and 68.6µs are required
for Kyber-512-CCA, Kyber-768-CCA and Kyber-1024-CCA,
respectively.

14

ACKNOWLEDGMENTS

This work is supported by Hong Kong Innovation and
Technology Commission (ITF Seed Fund ITS/216/19), City
University of Hong Kong (Project 9440242), and National
Natural Science Foundation of China (No. 62002023 and No.
62002239)

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete log-
arithms and factoring,” in Proceedings 35th annual symposium on
foundations of computer science. IEEE, 1994, pp. 124–134.

[2] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber:
a CCA-secure module-lattice-based KEM,” in 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2018, pp.
353–367.

[3] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based
public key cryptosystem,” in International Algorithmic Number The-
ory Symposium. Springer, 1998, pp. 267–288.

[4] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange, CPA-secure encryption and
CCA-secure KEM,” in International Conference on Cryptology in
Africa. Springer, 2018, pp. 282–305.

[5] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier,
J. Szefer, and W. Wang, “Classic McEliece: conservative code-based
cryptography,” NIST submissions, 2017.

[6] D. Moody, G. Alagic, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K.
Liu, C. Miller, R. Peralta, R. Perlner, A. Robinson, D. Smith-Tone,
and J. Alperin-Sheriff, “Status Report on the Second Round of
the NIST Post-Quantum Cryptography Standardization Process,”
2020.

[7] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T.
Nguyen, and K. Gaj, “Implementation and benchmarking of
round 2 candidates in the NIST post-quantum cryptography
standardization process using hardware and software/hardware
co-design approaches,” Cryptology ePrint Archive: Report 2020/795,
2020.

[8] H. Nejatollahi, R. Cammarota, and N. Dutt, “Flexible NTT Accel-
erators for RLWE Lattice-Based Cryptography,” in 2019 IEEE 37th
International Conference on Computer Design (ICCD). IEEE, 2019,
pp. 329–332.

[9] Y. Xing and S. Li, “A compact hardware implementation of CCA-
secure key exchange mechanism CRYSTALS-KYBER on FPGA,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 328–356, 2021.

[10] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
efficient architecture of NewHope-NIST on FPGA using low-
complexity NTT/INTT,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 49–72, 2020.

[11] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual international conference
on the theory and applications of cryptographic techniques. Springer,
2010, pp. 1–23.

[12] ——, “A Toolkit for Ring-LWE Cryptography,” in Advances in
Cryptology – EUROCRYPT 2013, T. Johansson and P. Q. Nguyen,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
35–54.

[13] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient
high-speed implementation of Kyber on Cortex-M4,” in Interna-
tional Conference on Cryptology in Africa. Springer, 2019, pp. 209–
228.

[14] H. M. Steffen, L. J. Kogelheide, and T. Bartkewitz, “In-depth
Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber
Message Encoding on ARM Cortex-M4,” Cryptology ePrint Archive,
2021.

[15] D. T. Nguyen and K. Gaj, “Optimized software implementations
of CRYSTALS-Kyber, NTRU, and Saber using NEON-based spe-
cial instructions of ARMv8,” in Proceedings of the NIST 3rd PQC
Standardization Conference (NIST PQC 2021), 2021.

[16] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Instruction-Set Accelerated Implementation of CRYSTALS-
Kyber,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 11, pp. 4648–4659, 2021.

[17] V. B. Dang, K. Mohajerani, and K. Gaj, “High-Speed Hardware Ar-
chitectures and FPGA Benchmarking of CRYSTALS-Kyber, NTRU,
and Saber,” Cryptology ePrint Archive, 2021.

[18] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “A
Configurable CRYSTALS-Kyber Hardware Implementation with
Side-Channel Protection,” Cryptology ePrint Archive, 2021.

[19] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST Post-Quantum
Cryptography-A Hardware Evaluation Study,” Cryptology ePrint
Archive, 2019.

[20] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
Configurable Crypto-Processor for Post-Quantum Lattice-based
Protocols,” IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, no. 4, p. 17–61, Aug. 2019.

[21] ——, “Sapphire: A configurable crypto-processor for post-
quantum lattice-based protocols (extended version),” Cryptology
ePrint Archive, 2019.

[22] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri,
“ISA extensions for finite field arithmetic: Accelerating Kyber
and NewHope on RISC-V,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 219–242, 2020.

[23] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pp. 239–
280, 2020.

[24] D.-e.-S. Kundi, Y. Zhang, C. Wang, A. Khalid, M. O’Neill, and
W. Liu, “Ultra High-Speed Polynomial Multiplications for Lattice-
based Cryptography on FPGAs,” IEEE Transactions on Emerging
Topics in Computing, pp. 1–1, 2022.

[25] C. Zhang, D. Liu, X. Liu, X. Zou, G. Niu, B. Liu, and Q. Jiang,
“Towards Efficient Hardware Implementation of NTT for kyber
on FPGAs,” in 2021 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2021, pp. 1–5.

[26] F. Yarman, A. C. Mert, E. Öztürk, and E. Savaş, “A Hardware Ac-
celerator for Polynomial Multiplication Operation of CRYSTALS-
Kyber PQC Scheme,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 1020–1025.

[27] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “High-Performance
Area-Efficient Polynomial Ring Processor for CRYSTALS-Kyber on
FPGAs,” Integration, vol. 78, pp. 25–35, 2021.

[28] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“High-Speed NTT-based Polynomial Multiplication Accelerator
for Post-Quantum Cryptography,” in 2021 IEEE 28th Symposium
on Computer Arithmetic (ARITH). IEEE, 2021, pp. 94–101.

[29] A. Al Badawi, B. Veeravalli, and K. M. M. Aung, “Efficient Poly-
nomial Multiplication via Modified Discrete Galois Transform and
Negacyclic Convolution,” in Future of Information and Communica-
tion Conference. Springer, 2018, pp. 666–682.

[30] A. Langlois and D. Stehlé, “Worst-case to average-case reductions
for module lattices,” Designs, Codes and Cryptography, vol. 75, no. 3,
pp. 565–599, 2015.

[31] E. Fujisaki and T. Okamoto, “Secure Integration of Asymmetric
and Symmetric Encryption Schemes,” in Annual international cryp-
tology conference. Springer, 1999, pp. 537–554.

[32] H. J. Nussbaumer, Fast Fourier Transform and Convolution
Algorithms, ser. Springer Series in Information Sciences, K.-s. Fu,
T. S. Huang, and M. R. Schroeder, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982, vol. 2. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-81897-4

[33] V. Lyubashevsky and G. Seiler, “NTTRU: truly fast NTRU using
NTT,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 180–201, 2019.

[34] E. Chu and A. George, Inside the FFT black box: serial and parallel
fast Fourier transform algorithms. CRC press, 1999.

[35] W. M. Gentleman and G. Sande, “Fast Fourier transforms: for
fun and profit,” in Proceedings of the November 7-10, 1966, fall joint
computer conference, 1966, pp. 563–578.

[36] M. Garrido, F. Qureshi, J. Takala, and O. Gustafsson, “Hardware
architectures for the fast Fourier transform,” in Handbook of signal
processing systems. Springer, 2019, pp. 613–647.

[37] “Sha3 (keccak).” [Online]. Available:
https://opencores.org/projects/sha3

[38] A. Karmakar, J. M. B. Mera, S. S. Roy, and I. Verbauwhede, “Saber
on ARM CCA-secure module lattice-based key encapsulation on
ARM,” Cryptology ePrint Archive, 2018.

15

Guangyan Li received the B.Eng degree in 2020
from the Department of Electrical Engineering,
City University of Hong Kong. He joined the over-
seas internship scheme to the LIRMM at Mont-
pellier, France from June to August of 2019. He
is now pursuing the PhD degree in the Depart-
ment of Electrical Engineering from City Univer-
sity of Hong Kong. His research interests include
reconfigurable computing with FPGA, and post-
quantum cryptography algorithm design.

Donglong Chen received the PhD degree from
the Department of Electronic Engineering, City
University of Hong Kong, in 2015. He was a
visiting research scholar of COSIC, KU Leuven,
Belgium, in 2013. After completing his PhD de-
gree study, he spent four years in the indus-
try including Huawei Technology Co., Ltd. and
Tencent Technology Co., Ltd. He is currently
an Associate Professor in the Falcuty of Sci-
ence and Technology, BNU-HKBU United Inter-
national College (UIC), China. His research in-

terests include algorithm-hardware co-optimization for cryptosystems,
software/hardware co-design for AI algorithms, and secure multi-party
computation.

Gaoyu Mao received the B.Eng. degree from
School of Microelectronics, Shandong University
in 2020. He is now pursuing the PhD degree in
the Department of Electrical Engineering from
City University of Hong Kong. His research in-
terests include software/hardware co-design ar-
chitecture and post-quantum cryptography algo-
rithm design.

Wangchen Dai received the B.Eng. degree in
electrical engineering and automation from Bei-
jing Institute of Technology, China, in 2010, the
M.A.Sc. degree in electrical and computer engi-
neering from the University of Windsor, Canada,
in 2013, and the Ph.D. degree in electronic engi-
neering from the City University of Hong Kong in
2018. After completing the Ph.D. study, he had
appointments at Hardware Security Lab, Huawei
Technologies Company Ltd., in 2018, and the
Department of CSSE, Shenzhen University in

2020, respectively. He is currently working as a Senior Researcher
with Zhejiang Lab, Hangzhou, China. His research interests include
cryptographic hardware and embedded systems, fully homomorphic
encryption, and reconfigurable computing.

Abdurrashid Ibrahim Sanka received his
B.Eng Electrical (first class) from the Depart-
ment of Electrical Engineering, Bayero Univer-
sity, Kano in 2011. He then got his master de-
gree in Embedded Microelectronics and Wire-
less Systems from Coventry University, United
Kingdom (UK) in 2014. He works as a lecturer at
Bayero University, Kano since 2012. Dr. Sanka
joined the CALAS group in 2017 for his Ph.D.
in the Department of Electrical Engineering, City
University of Hong Kong, and he received his

Ph.D. degree in 2022. His research interests include blockchain tech-
nology, embedded systems, high performance reconfigurable computing
with FPGA, and hardware and information security.

Ray C.C. Cheung (Senior Member, IEEE) re-
ceived the B.Eng. (Hons.) and M.Phil. degrees
in computer engineering and computer science
and engineering from The Chinese University
of Hong Kong (CUHK) in 1999 and 2001, re-
spectively, and the D.I.C. and Ph.D. degrees in
computing from Imperial College London (IC) in
2007. After completing his Ph.D. study, he re-
ceived the Hong Kong Croucher Foundation Fel-
lowship and moved to Los Angeles, at the Elec-
trical Engineering Department, UCLA, where he

spent two years with the Image Communication Lab for continuing
his research work. He is currently an Associate Professor with the
Department of Electrical Engineering, City University of Hong Kong,
and the Digital Systems Lab. His current research interests include
cryptographic hardware and embedded system designs.

