
44

High-performance and Configurable SW/HW Co-design

of Post-quantum Signature CRYSTALS-Dilithium

GAOYU MAO, City University of Hong Kong, China and Zhejiang Lab, China

DONGLONG CHEN, BNU-HKBU United International College, China

GUANGYAN LI, City University of Hong Kong, China

WANGCHEN DAI, Zhejiang Lab, China

ABDURRASHID IBRAHIM SANKA, City University of Hong Kong, China

ÇETIN KAYA KOÇ, UC Santa Barbara, USA, NUAA, China, and Iǧdır University, Turkey

RAY C. C. CHEUNG, City University of Hong Kong, China

CRYSTALS-Dilithium is a lattice-based post-quantum digital signature scheme that is resistant to attacks by

quantum computers and has been selected to be standardized in the NIST post-quantum cryptography (PQC)

standardization process. However, the speed performance and design flexibility of the Dilithium still need to

be evaluated. This article presents a high-performance software/hardware co-design of CRYSTALS-Dilithium

based on the NIST PQC round-3 parameters. High-speed pipelined hardware modules for NTT/INTT, point-

wise multiplication/addition, and for SHAKE are included in the design to accelerate the time-consuming

operations in Dilithium. All hardware modules are parameterized, thus allowing full support of runtime con-

figuration to increase versatility. Moreover, the proposed software/hardware architecture and tight operating

workflows reduce the data transmission overhead between the processor and other hardware modules. The

hardware accelerator is implemented with a reconfigurable logic on FPGA and is integrated with the high-

performance ARM Cortex-A9 processor in the Xilinx Zynq Architecture. We measure the performance of

the software/hardware system for Dilithium in NIST security levels 2, 3, and 5. Compared to pure software

implementations, we achieve 8.7–12.5 times speedup in Key generation, 6.3–7.3 times speedup in Sign, and

9.1–12.2 times speedup in Verify operations.

CCS Concepts: • Security and privacy → Hardware security implementation; Digital signatures; •

Hardware→ Hardware accelerators;

Additional Key Words and Phrases: Post-quantum cryptography, lattice-based cryptography, digital signature,

CRYSTALS-Dilithium, software-hardware co-design

This work is supported by Hong Kong Innovation and Technology Commission (ITF Seed Fund ITS/216/19), City University

of Hong Kong (Project Grant Nos. 9440242 and 9678187), National Natural Science Foundation of China (Nos. 62002023

and 62002239), the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,

BNU-HKBU United International College (2022B1212010006), Guangdong Higher Education Upgrading Plan (2021-2025)

(UIC R0400001-22), Guangdong Higher Education Key Platform and Research Project (No. 2020KQNCX100).

Authors’ addresses: G. Mao, City University of Hong Kong, Hong Kong, China and Zhejiang Lab, Hangzhou, China; email:

gaoyumao3-c@my.cityu.edu.hk; D. Chen (corresponding author), BNU-HKBU United International College, Zhuhai, China;

email: donglongchen@uic.edu.cn; G. Li, A. I. Sanka, and R. C. C. Cheung, City University of Hong Kong, Hong Kong,

China; emails: {guangyali5-c, iasanka2-c}@my.cityu.edu.hk, r.cheung@cityu.edu.hk; W. Dai, Zhejiang Lab, Hangzhou,

China; email: w.dai@my.cityu.edu.hk; Ç. K. Koç, UC Santa Barbara, USA and NUAA, China and Iǧdır University, Turkey;

email: cetinkoc@ucsb.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1936-7406/2023/06-ART44 $15.00

https://doi.org/10.1145/3569456

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

https://orcid.org/0000-0001-7403-3081
https://orcid.org/0000-0001-5357-7442
https://orcid.org/0000-0002-8399-9467
https://orcid.org/0000-0002-5192-1649
https://orcid.org/0000-0002-1664-5108
https://orcid.org/0000-0002-2572-9565
https://orcid.org/0000-0002-6764-0729
mailto:permissions@acm.org
https://doi.org/10.1145/3569456
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569456&domain=pdf&date_stamp=2023-06-20

44:2 G. Mao et al.

ACM Reference format:

Gaoyu Mao, Donglong Chen, Guangyan Li, Wangchen Dai, Abdurrashid Ibrahim SANKA, Çetin Kaya Koç,

and Ray C. C. Cheung. 2023. High-performance and Configurable SW/HW Co-design of Post-quantum Sig-

nature CRYSTALS-Dilithium. ACM Trans. Reconfig. Technol. Syst. 16, 3, Article 44 (June 2023), 28 pages.

https://doi.org/10.1145/3569456

1 INTRODUCTION

Public key cryptography provides data confidentiality and authenticity in modern digital commu-

nication systems. However, the most widely used public-key algorithms, including the RSA and

ECC, can be efficiently broken by running the Shor’s algorithm [40] on a quantum computer with a

few thousand qubits. Hence, it has become necessary to find suitable alternative cryptosystems be-

fore the practical deployment of quantum computers. Post-quantum cryptography (PQC) is a

term to describe the set of cryptographic algorithms that are secure against quantum attacks [7, 8].

PQC algorithms are divided into different variants, namely, lattice-based cryptography [30], code-

based cryptography [33], multivariate cryptography [13], hash-based cryptography [9], and su-

persingular elliptic curve isogeny cryptography [20]. The National Institute of Standards and

Technology (NIST) has initiated a process of PQC standardization since 2016. Sixty-nine schemes

were selected for the first round of evaluation after 2017. Seven of these schemes have advanced to

the third round of evaluation after July 2020. In July 2022, NIST identified four candidate algorithms

for standardization, including three lattice-based cryptography: CRYSTALS-KYBER, CRYSTALS-

Dilithium, FALCON, and a hash-based signature: SPHINCS+.

Lattice-based cryptography is based on the difficulty of computational lattice problems that

cannot be solved efficiently on a conventional digital computer. Examples of such problems include

the shortest vector problem (SVP) [1], short integer solution problem (SIS) [1], and the

learning with error problem (LWE) [36]. The SIS problem is to find a short vector s such that

A·s = 0, given the matrix A. The LWE is to find the vector s from b = A·s+e, given the matrix A and

the vector b, where e is the hidden error vector. The Ring-SIS and Ring-LWE problems [28] define

the matrix A over a polynomial ring so it can be obtained under the rotational shift operation

of a vector a. This design provides more compactness and efficacy, because there is no need to

store the large matrix A and the calculation of A · s can be accelerated by using the number

theoretic transforms (NTT). The Module-SIS (MSIS) and Module-LWE (MLWE) [24] replace

the single ring elements (a and s) with the module elements over the same ring. Therefore, there

exist tradeoffs between security and efficiency in MSIS and MLWE.

Based on the hardness of the MSIS and MLWE lattice problems, CRYSTALS-Dilithium [3] is de-

signed using the Fiat-Shamir with Aborts technique [26]. It is a digital signature scheme that has

been proved secure under the chosen message attacks. The most time-consuming operations in the

Dilithium scheme are the extendable-output function (XOF) and the matrix/vector multiplica-

tion in the polynomial ring. The parameters of polynomial ring and XOF are the same in different

security levels but only involve fewer or more operations. The officially submitted Dilithium im-

plementation is given in the C language, and there is an AVX2 optimized version.

The deployment of different software and hardware platforms significantly impacts the perfor-

mance of the cryptosystems. There are many software and hardware design explorations to evalu-

ate the NIST PQC algorithm standardization process. Software implementation owns the merits of

easy portability and short development time, thus normally becomes the first performance evalua-

tion choice. Greconici et al. [18] implemented Dilithium on ARM Cortex-M3 and ARM Cortex-M4

to explore the tradeoff between speed and memory usage strategy. Hardware implementation (e.g.,

FPGA and ASIC) can easily outperform software implementation in speed and power, although a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

https://doi.org/10.1145/3569456

High-performance and Configurable SW/HW Co-design 44:3

relatively longer development cycle is required. Soni et al. [41] made a hardware comparison of

the NIST PQC signature algorithm Dilithium and qTESLA in FPGA using an HLS-based design

methodology. Ricci et al. [37] proposed the first VHDL implementation of Dilithium on FPGA and

was a high-speed design.

Software/hardware co-design, however, is a System on Chip (SoC) design involving both the

software design in a microprocessor such as ARM and RISC-V and the hardware design on an

FPGA or ASIC. The software/hardware co-design possesses the advantages of pure software and

hardware platforms. Specifically, a parallel and pipelined architecture could be explored to speed

up the critical part of the system on the hardware while the remaining non-critical part be imple-

mented in the software in a short development time. Hence, the software/hardware co-design has

less time to market than pure hardware [21] and achieves better performance than pure software

designs.

Furthermore, the limited hardware resources in FPGAs make the software/hardware co-design

a good choice for efficient system implementations. Systems that cannot fit into the desired FPGA

could be implemented as a software/hardware co-design with reduced costs (than buying bigger or

higher-end FPGA) and optimum performance [2]. Other software/hardware co-design advantages

are easier controllability and higher flexibility. The control and configuration section could be put

on the software [21]. More flexibility could be achieved by placing the non-critical part susceptible

to modifications on the software side while the fixed critical part achieved in the hardware. Hence,

by using a software/hardware co-design, the hardware side could easily be subjected to several

tests from the software side code. Aysu et al. [2] presented an SW/HW co-design for lattice-based

signature to reduce resource utilization and optimize the latency in offline and online applica-

tion scenarios. Dang et al. [12] implemented three lattice-based PQC algorithms using SW/HW

co-design and demonstrated 7–30× speedup over pure software. Mera et al. [29] designed a poly-

nomial multiplication co-processor for the saber and achieved a 6× speedup over the software at

a small area cost.

Several software/hardware co-designs exist on NIST round-2 Dilithium, including [46] on ZYNQ-

7020 platform with ARM Cortex-A9 processor, and [4] with software on RISC-V processor and

hardware on ASIC. In Reference [46], the authors designed hardware architecture for NTT, point-

wise addition/multiplication, and SHA-3 Keccak functions. However, the speed improvement was

insignificant. The point-wise operations only considered two polynomials, not particularly acceler-

ation for the polynomial matrix and vectors. Meanwhile, the Keccak-related samplers were not im-

plemented in the hardware, which resulted in a large data transmission overhead. In Reference [4],

hardware accelerators, including sampling with SHA-3 based Pseudo-Random Number Gener-

ation (PRNG) and NTT, were designed to adapt the computation of several lattice-based cryp-

tosystems. However, the authors did not provide a dedicated acceleration for the time-consuming

polynomial matrix-vector multiplication, resulting in a longer Dilithium computation time.

To further shorten the data transmission overhead and increase the speed of the Dilithium cryp-

tosystem, we propose a high-speed hardware accelerator and integrate it into a flexible SoC ar-

chitecture. To further benefit the society, our code is open-source and available at https://github.

com/CALAS-CityU/SW-HW-Co-design-of-Dilithium. The major contributions of this work are as

follows:

• In pursuit of configurability, a flexible SoC architecture is designed for both the software

and the hardware computation. A fully parameterized versatile hardware accelerator design

enables a runtime configuration to adjust the computation for Dilithium of different security

levels.

• To maintain a good speed-area tradeoff, a hybrid NTT/INTT module is designed for both

NTT and INTT. The separated NTT and INTT algorithms are combined, and the hybrid

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

https://github.com/CALAS-CityU/SW-HW-Co-design-of-Dilithium

44:4 G. Mao et al.

ALGORITHM 1: Dilithium’s Key Generation [3]

Output: Public key pk , Secret key sk

1: ζ ← {0, 1}256

2: (ρ, ς, K) ∈ {0, 1}256×3 := H256 (ζ)

3: (s1, s2) ∈ S l
η × Sk

η := H128 (ς)

4: Â ∈ Rk×l
q := H128 (ρ)

5: ŝ1 =NTT(s1)
6: m̂1 = Â · ŝ1 // Polynomial Matrix-Vector Multiplication (Point-wise Multiplication + Point-wise Addition)

7: m2 =INTT(m̂1)
8: t :=m2 + s2 // Point-wise Addition

9: (t1, t0) := Power2Roundq (t, d)

10: tr ∈ {0, 1}384 := H256 (ρ | |t1)
11: Pack pk = (ρ, t1), pack sk = (ρ, K, tr, s1, s2, t0)

architecture can now reuse hardware resources for NTT/INTT computation. Hardware ac-

celerators for the time-consuming SHAKE and point-wise addition/multiplication are de-

signed to speed up the whole Dilithium system. Moreover, all hardware modules are imple-

mented to run in constant time to avoid simple timing attacks.

• To reduce the data transmission overhead, vectorized point-wise adder and multiplier are

designed to accommodate different lengths of polynomial matrix-vector multiplication and

polynomial vector multiplication/addition/subtraction. This design effectively reduces the

data transfer between the software and the hardware. Furthermore, a unified pipeline ar-

chitecture, which tightly integrates Keccak core with samplers, is designed for the SHAKE.

The tightly coupled architecture can effectively reduce the intermediate data transmission

between the software and the hardware.

• The proposed design is implemented on Xilinx ZedBoard and evaluates the Dilithium Key

generation, Sign, and Verify algorithms performance under three different security levels.

Implementation results show that the proposed system could compute Dilithium security

level 2 Key generation, Sign, and Verify in 1.10ms , 5.93ms , and 1.17ms , respectively. Com-

pared with the pure software implementation, the proposed software/hardware co-design

achieves a speedup of 6.3–33.2×.

The rest of this article is organized as follows: Section 2 briefly introduces the Dilithium al-

gorithms and provides a software profiling of the algorithms. Section 3 presents the hardware

design details, including software/hardware co-design architecture, hybrid NTT/INTT module,

point-wise multiplication module, point-wise addition module, and SHA-3-based PRNG module.

Section 4 discusses the experiment results, including the design and test of hardware and soft-

ware, operational analysis, and the overall performance of SW/HW co-design. Section 5 compares

the design of polynomial operations and complete signature schemes with other related works.

Section 6 concludes this article.

2 PRELIMINARIES

2.1 CRYSTALS-Dilithium Signature Algorithm

The Dilithium signature cryptosystem comprises three parts: Key generation, Sign, and Verify.

Specifically, Key generation generates public and private keys. Sign uses the private key to sign

the message, while the Verify uses the public key to verify the validity of the signature. For ease

of understanding from the computation perspective, we enrich the content of these algorithms

by adding computational details and describing them in Algorithms 1, 2, and 3, respectively. Ta-

ble 1 describes the notations and operations in the above algorithms used in the NIST Dilithium

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:5

Table 1. Algorithm Notations and Operations Description

Notation or operation Description

Superscript Data size.

Subscript Serial number or parameter.

Normal letter Scalar.

Bold lower-case letters (e.g., s) Polynomial vector.

Bold upper-case letters (e.g., A) Polynomial matrix.

| | Concatenate numbers.

ˆ The number is in NTT domain.

H128 SHAKE128 XOF in SHA-3.

H256 SHAKE258 XOF in SHA-3.

Sη Rejection eta sampling with coefficient in [−η,η].

Rq Rejection uniform sampling with coefficient in [−q,q].

Sγ1 Bit-pack to get number in[−γ1,γ1).
NTT Transform polynomial to NTT domain.

INTT Convert the polynomial from NTT domain to normal domain.

Power2 Round Power of two rounding.

HighBits Decompose to get high-order bits.

LowBits Decompose to get low-order bits.

MakeHint Compute hint for overflow bits.

UseHint Use hint to correct overflow bits.

Sample InBall Sample polynomial with τ nonzero coefficients in {−1,1}.

Table 2. Parameters of Dilithium [3]

NIST Security Level 2 3 5

Parameters

q [modulus] 8,380,417 8,380,417 8,380,417

d [dropped bits from t] 13 13 13

τ [# of ±1’s in c] 39 40 60

γ1 [y coefficient range] 217 219 219

γ2 [lower rounding range] (q − 1)/88 (q − 1)/32 (q − 1)/32

(k, l) [dimensions of A] (4, 4) (6, 5) (8, 7)
η [secrete key range] 2 4 2

β [τ · η] 78 196 120

ω [max # of 1’s in h] 80 55 75

reference C code [3]. Note that Dilithium has three different security levels, which provides a

tradeoff in security and performance. Table 2 lists the parameter values in different security levels.

In Algorithm 1, the ζ is a 256-bit true random number (i.e., Step 1) and is expanded by the

SHAKE256 to get the ρ, ς ,K (i.e., Step 2). The ς is extended by the SHAKE128, which generates

short vectors s1, s2 after rejection sampling (i.e., Step 3). The ρ is extended by the SHAKE128

to generate the polynomial matrix A after rejection sampling (i.e., Step 4). Because Dilithium is

based on the MLWE problem, A is a polynomial matrix, not a vector. NTT is used in polynomial

matrix-vector multiplication (i.e., Steps 5–7). Note that A is sampled in the NTT domain, no further

transformation is needed. The Power2Round breaks up high and low bits to shrink the key size

(i.e., Step 9). The outputs pk and sk are packed and stored for Sign and Verify (i.e., Step 11).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:6 G. Mao et al.

ALGORITHM 2: Dilithium’s Sign [3]

Input: Secret key sk , Message M

Output: Signature σ

1: Unpack sk = (ρ, K, tr, s1, s2, t0)
2: μ ∈ {0, 1}384 := H256 (tr | |M)
3: ρ′ ∈ {0, 1}384 := H256 (K | |μ)

4: Â ∈ Rk×l
q := H128 (ρ)

5: ŝ1=NTT(s1), ŝ2 =NTT(s2), t̂0 =NTT(t0)
6: κ := 0, (z, h) := ⊥
7: while (z, h) = ⊥ do

8: y ∈ ˜S l
γ1

:= H256 (ρ′, κ)

9: ŷ =NTT(y)

10: ŵ := Â · ŷ // Polynomial Matrix-Vector Multiplication (Point-wise Multiplication + Point-wise Addition)

11: w =INTT(ŵ)
12: w1 := HighBitsq (w, 2γ2)

13: c̃ ∈ {0, 1}256 := H256 (μ | |w1)
14: c ∈ Bτ :=SampleInBall(c̃)
15: ĉ =NTT(c)
16: v1 =INTT(ĉ · ŝ1) // Polynomial Vector Multiplication (Point-wise Multiplication)

17: z := y + v1 // Point-wise Addition

18: v2 =INTT(ĉ · ŝ2) // Polynomial Vector Multiplication (Point-wise Multiplication)

19: v3 = w − v2 // Point-wise Subtraction

20: r0 :=LowBitsq (v3, 2γ2)
21: if | |z | |∞ ≥ γ1 − β or | |r0 | |∞ ≥ γ2 − β then

22: (z, h) := ⊥
23: else

24: v4 =INTT(ĉ · t̂0) // Polynomial Vector Multiplication (Point-wise Multiplication)

25: h :=MakeHintq (−v4, v3 + v4, 2γ2) // Point-wise Addition

26: if | |v4 | |∞ ≥ γ2 or the # of 1’s in h ≥ ω then

27: (z, h) = ⊥
28: end if

29: end if

30: κ := κ + l

31: end while

32: Pack σ = (z, h, c̃)

In Algorithm 2, the sk is unpacked for Sign (i.e., Step 1). The SHAKE256 is used for hashing

input messages and keys (i.e., Steps 2–3). The masking vector y is expanded from ρ ′,κ by using

the SHAKE256, and its coefficients are within the range [−γ1,γ1) (i.e., Step 8). The polynomial

matrix-vector multiplication A · y is calculated and the HighBits is used to get the high-order bits

w1 (i.e., Steps 9–12). The challenge c is obtained by hashing the tr ,M,w1 with the SHAKE256,

then sampled with τ random positions to be ±1 and the others be 0 (i.e., Steps 13–14). The c is used

to generate the potential signature z (i.e., Steps 15–17). Note that fewer bits are used to store the

signature; it needs to generate the hints h before compression to ensure the correctness in Verify

(i.e., Step 25). There are four conditions to check whether z will leak information (i.e., Steps 21, 26).

If yes, then the signature will be rejected and then generated again.

In Algorithm 3, public key pk and signature σ are unpacked for Verify (i.e., Steps 1–2). The

messageM and public key are hashed with the SHAKE256 (i.e., Step 3). The NTT is used to calculate

Az − ct (i.e., Steps 5–10). The hint h is used to correct calculation errors in data compression (i.e.,

Step 10). There are three conditions to check whether the obtained signature can meet the security

requirements (i.e., Step 12). If the security requirements are not satisfied simultaneously, then the

signature will be rejected.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:7

Fig. 1. Software profiling results of Dilithium.

ALGORITHM 3: Dilithium’s Verify [3]

Input: Public key sk , Message M , signature σ

Output: The validity of the signature

1: Unpack σ = (z, h, c̃)
2: Unpack pk = (ρ, t1)
3: μ ∈ {0, 1}384 := H256 (H256 (ρ | |t1) | |M)

4: Â ∈ Rk×l
q := H128 (ρ)

5: ẑ =NTT(z)
6: ŵ1 := Â · ẑ // Polynomial Matrix-vector Multiplication (Point-wise Multiplication + Point-wise Addition)

7: c :=SampleInBall(c̃)

8: ĉ =NTT(c), t̂1 =NTT(t1 · 2d)
9: w2 = ĉ · t̂1 // Polynomial Vector Multiplication (Point-wise Multiplication)

10: w′ :=UseHintq (h, w1 −w2, 2γ2) // Point-wise Subtraction

11: c2 = H256 (μ | |w′)
12: Return[| |z | |∞ < γ1 − β] and [c̃ = c2] and [# of 1’s in h is ≤ ω]

2.2 Software Profiling and Design Analysis

Before dividing the workload between the software and the hardware, it is important to first ana-

lyze the schedule and data dependency of the algorithm, conduct profiling, and identify the time-

consuming functions in the system. We choose the Dilithium reference C code implementation [3]

in NIST Security Level 3 and profile it with the TCF profiler on Xilinx Vitis Platform. We execute

the Key generation, Sign and Verify algorithms 1,000 times on the ARM Cortex-A9 processor (with

cache on) at 666 MHz and obtain the time percentage of each operation, as summarized in Figure 1.

As shown in Figure 1, the most time-consuming part is the SHA-3 related operation, including

the SHAKE128/SHAKE256 permutation, input absorb, and output store functions. The second is

the INTT operation, and the third is the NTT operation. Both NTT and INTT operations include

modular multiplication and occupy around 34% of the computing time. The fourth is the point-

wise multiplication (PWM) operation, which takes 9.68% of the time. The fifth is the point-

wise addition (PWA) operation with the subsequent modular operations (the PWA also includes

the point-wise subtraction operation). Sampling operation occupies around 2% of the total time,

which includes the rejection eta sampling and rejection uniform sampling. There are 5% remaining

operations are listed as Others in Figure 1, such as signature pack operation for 0.57%, signature

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:8 G. Mao et al.

Fig. 2. The top-level SW/HW co-design SoC architecture.

unpack operation for 1.39%, the decompose operation in make/use hint for 1.08%, check norm

operation in signature checking for 0.56%, the SampleInBall operation for 0.06%, and so on.

Based on the Profiling results, hardware modules are designed to accelerate the six most timing-

consuming operations, which add up to 94.91% of the total execution time. They are the hybrid

NTT/INTT module for both NTT and INTT operation, the PWM module for point-wise multipli-

cation operation, the PWA module for point-wise addition/subtraction operation, and the SHAKE

module for SHA-3 operation and sampling operation. For the other operations, they are neither

time-consuming nor friendly to hardware design, so we keep them running in the software. To

increase the design flexibility to support Dilithium computation for all the security levels, we pa-

rameterize the hardware modules to support runtime configuration.

3 HARDWARE ACCELERATION ARCHITECTURE

3.1 Run-time Configurable SW/HW Co-Design Architecture

The top-level software/hardware co-design architecture is shown in Figure 2. The proposed system

is designed according to the Xilinx Zynq SoC architecture, which includes the Processing System

(PS) and the Programmable Logic (PL). The Advanced eXtensible Interface (AXI) standard

is used to interconnect the PS and PL. The software runs on the ARM processor on the PS, while

the designed hardware accelerator runs on the reconfigurable logic on the PL.

On the PS side, the processor accesses the data in the DDR for computation. The processor

includes a cache to store temporary data for acceleration. The IRQ port is used to answer the

interrupt request from the PL. The HP port is a high-performance interface that connects to the

DDR controller. It could read and write a large amount of data in memory through the AXI protocol.

The GP port is a general-purpose low-performance interface that can read and write registers on

the PL through the AXI-Lite protocol.

On the PL side, DMA is the intermedium for data communication with DDR and is connected

to the HP port using AXI stream protocol. The DMA interacts with the hardware accelerator

through input and output FIFOs. The read and write interrupt signals of the DMA pass to the IRQ

port through the concat IP. The processor controls the DMA data transfer and passes configured

parameters via the GP ports using AXI lite protocol. The AXI memory interconnect and AXI

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:9

Table 3. Control Register Definition

Register Control signal Width Description

Reg0 start_module 3 Initiate the start/stop of the corresponding modules.

Reg1

ntt_sel 1 Select the NTT or INTT function of the hybrid NTT/INTT module.

pwm_vector_len 4 Determine the polynomial vector length in the PWM module.

pwa_add_sub_sel 1 Determine the polynomial vector length in the PWA module.

pwa_vector_len 4 Select the addition or subtraction operation in the PWA module.

Reg2

shake_mode 2 Decide the types of function in the SHA-3 family.

sampler_sel 1
Choose the sampler type is uniform rejection sampling

or eta rejection sampling.

sampler_eta 1 Set the parameter in the eta rejection sampler.

shake_write_len 10
Define the number of output bytes writing to the output FIFO

in the SHAKE module.

Reg3 shake_read_len 32 Define the number of bytes that the SHAKE module accept.

peripheral interconnect are the intermediate medium between the endpoint IPs and the PS. Their

main tasks include memory mapping, bit width conversion, and clock conversion. The AXI stream

data transmission in this design uses a 64-bit bus, while the AXI lite control signal uses a 32-bit bus.

The HW_ACC_IP consists of input and output FIFOs, a hardware accelerator, control registers,

and the module control logic. The hardware accelerator contains four modules, including the hy-

brid NTT/INTT, PWM, PWA, and SHAKE. Each module works independently. All modules work

with the same input and output FIFOs. The module control logic is an arbiter designed to convey

control information between the PS and different acceleration modules. The design configurability

is achieved through control registers, which are used to convey control signals and design param-

eters. The four control registers are defined as shown in Table 3. The register0 is to use 3-bit to

control the startup of four modules, and the other registers are used to convey parameters settings

of different modules.

3.2 Hybrid NTT/INTT Hardware Architecture

NTT is generally a Discrete Fourier Transform (DFT) over an integer field or ring [25, 35,

39]. NTT is commonly used to accelerate the multiplication of two polynomials: The classical

schoolbook polynomial multiplication has a complexity of O(n2), while the NTT can reduce it to

O(n logn). The NTT is defined over polynomial ring Rq = Zq[x]/(xn + 1), where the coefficient

is under modulo q and the polynomial degree is smaller than n. The normal domain polynomial

coefficients are denoted as ai , and the NTT domain polynomial coefficients are represented as âi ,

where i = 0, 1, . . . ,n−1. The NTT is computed as âi =
∑n−1

j=0 ajω
i j inZq , while the INTT calculates

ai = n
−1∑n−1

j=0 âjω
−i j in Zq , where ω is the primitive root of unity in Rq .

When directly applying NTT in the polynomial multiplication, it requires n zeros appended to

each input, which doubles the length of the inputs and requires additional reduction to the ring Rq .

To address these issues, the negative wrapped convolution (NWC) method [27] can be explored.

By applying NWC in polynomial multiplication, one needs to first perform point-wise multiplica-

tions of ai and γ i , where the γ is the square root of ω, then transform two polynomials a(x) and

b (x) into NTT domain to get â(x) and b̂ (x). Next, point-wise multiply these two polynomials and

get ĉ (x). After that, use INTT to transform the results back to the normal domain and get the

results c (x). Last step is to perform point-wise multiplication of ci and γ−i .

Applying NWC requires the multiplication of γ i before NTT and the multiplication of γ−i after

INTT. The previous work in Reference [38] showed multiplication of γ i can be merged inside

the decimation-in-time NTT based on the Cooley-Tukey (CT) [11] butterfly and the work in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:10 G. Mao et al.

Reference [34] showed the multiplication of γ−i can be merged into the decimation-in-frequency

INTT, which is based on Gentle-Sande (GS) [17] butterfly. For the CT structure, the multiplication

takes place before the add/subtract operation (i.e., a1 +a2 ·ω, a1 −a2 ·ω). For the GS structure, the

multiplication takes places only after subtract operation (i.e., a1 + a2, (a1 − a2) · ω).

When deploying NTT into hardware implementation, speed performance and resource con-

sumption are important factors. By applying CT structure in NTT and GS structure in INTT, the

speed can be increased but the resources consumption is doubled. Based on the work in Refer-

ences [23, 42, 44], a hybrid NTT/INTT algorithm is proposed for hardware implementation, which

combines control logic and butterfly computation unit for both NTT and INTT. By designing a

combined hardware module, the resources are saved and some multiplexers are introduced for

function selection. The twiddle factors for both NTT and INTT are pre-computed and stored in

the ROM memory. It is worth noting that in NTT, the pre-computed twiddle factor is obtained by

first calculating zeta[i] = γ i , i = 0, 1, . . . ,n−1 and then switching the coefficient order through the

bit reverse function. INTT first calculates zeta[i] = γ i , i = n,n + 1, . . . , 2n − 1 and then performs

bit reverse operation. Since γn ≡ −1 mod q, one could deduce the pre-computed twiddle factors

of INTT from NTT by flipping the sign bit. Using this method, we could reduce storage space for

the twiddle factors by half compared with the traditional method.

ALGORITHM 4: Hybrid NTT/INTT Algorithm

Input: a (x) with coefficients {a1, a2 · · · an }, or â (x) with coefficients {â1, â2 · · · ân }
Input: Pre-computed twiddle factor zeta[i] = γ Bit Rever se[i];

Output: NTT(a (x)) or INTT(â (x))
1: Initialization k ← 0 or n

2: for m = 0; m < loд2n ; m++ do

3: len← (n
2 >> m) or (1 << m)

4: for i = 0; i < n; i = j + len do

5: ω ← zeta[++k] or q - zeta[- -k]

6: for j = i; j < i + len; j++ do

7: r1 ← aj+l en or (âj − âj+l en)/2

8: u1 ← r1 · ω // Modular Multiplication (Multiplication + Modular Reduction)

9: r2 ← u1 or âj+l en

10: u2 ← aj + r2 or âj + r2

11: t1 ← u2 or
u2
2

12: t2 ← (aj − u1) or u1

13: aj or âj ← t1

14: aj+l en or âj+l en ← t2

15: end for

16: end for

17: end for

In Algorithm 4, the polynomial length n is 256, and the primitive 2n-th root of unity γ is 1,753

in Zq . The arithmetic is performed under modulus q, which is the prime number 8,380,417 =

223−213+1. The unified butterfly structure takes a1,a2,ω as inputs, calculates a1+a2 ·ω, a1−a2 ·ω
in NTT, and calculates (â1+â2)/2, (â1−â2) ·ω/2 in INTT (i.e., Steps 7–14). The multiplication ofn−1

in INTT is integrated into the butterfly structure by the multiplication of 1/2, which is achieved

by (u2 >> 1) whenu2 is even or (u2 >> 1)+ (q+1)/2 whenu2 is odd. The modular reduction after

the multiplication of r1 and ω (i.e., Step 8) is expensive in hardware. The commonly used Barrett

reduction [5] and Montgomery modular multiplication [31] algorithms require additional multi-

plication and conditional subtraction. We utilize the property of (223 ≡ 213 − 1 mod q) and obtain

an efficient modular reduction algorithm by splitting large-bit operation into small-bit operation

without additional multiplication, as shown in Algorithm 5.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:11

Fig. 3. Hybrid NTT/INTT hardware design architecture.

ALGORITHM 5: Proposed Efficient Modular Reduction in Z223−213+1

Input: a[45 : 0]

Input: q[22 : 0] = 223 − 213 + 1

Output: r = a mod q

1: c[13 : 0] = a[45 : 33] + a[32 : 23]

2: e[10 : 0] = c[13 : 10] + c[9 : 0]

3: f [22 : 0] = 213 · (e[10] + e[9 : 0]) − (e[10] + c[13 : 10])
4: x [23 : 0] = f [22 : 0] + a[22 : 0]

5: if x ≥ q then

6: x [22 : 0] = x [23 : 0] − q[22 : 0]

7: end if

8: d[22 : 0] = a[45 : 33] + a[45 : 23]

9: r [23 : 0] = x [22 : 0] − d[22 : 0]

10: if r ≥ q then

11: r [23 : 0] = r [23 : 0] − q[22 : 0]

12: end if

13: if r < 0 then

14: r [22 : 0] = r [23 : 0] + q[22 : 0]

15: end if

16: Return r

The designed NTT hardware architecture is shown in Figure 3. First, data is read from the

64-bit input FIFO and stored in the RAM_1. The polynomial coefficients are stored as 32-bit in-

tegers in the processor, so each 64-bit input data contains two polynomial coefficients. The two

32-bit polynomial coefficients are transformed under the modular q to cut the bit length to 23-bit.

Second, the data is read from one RAM to the butterfly unit for computation. At the same time, the

butterfly unit writes the computed data into the other RAM. The different operations in NTT and

INTT are selected by the multiplexer in the Butterfly unit, controlled by the 1-bit ntt_sel signal.

Two RAMs take turns to read and write, as controlled by the 1-bit flip signal. Finally, the 46-bit out-

put data from the RAM_2 is expanded to 64-bit, then written into the output FIFO. The single-port

ROM stores the pre-computed twiddle factor ω. The width of the ROM is 23-bit, and the depth is

n = 256. Two RAMs are dual-port with a width of 23-bit and a depth of n
2 = 128. A finite-state

machine (FSM) is designed to manage these three working states. Counters are designed to con-

trol each clock cycle, so each state consumes a fixed number of cycles. The modular reduction unit

designed according to Algorithm 5 contains in the butterfly unit, which consumes five clock cycles

during the reduction in pipelined mode.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:12 G. Mao et al.

Fig. 4. Polynomial matrix-vector multiplication.

3.3 Vectorized PWM and PWA Hardware Architecture

In Dilithium, a large number of polynomial matrices and polynomial vectors require the calcula-

tion of point-wise multiplication (PWM) and point-wise addition (PWA). Hence, an efficient

hardware design to accelerate these computations is essential to a high-speed Dilithium system.

We use the array a[n] to represent all the n coefficients and a[i] to be one of the coefficient

from polynomial a(x), where a(x) =
∑n−1

i=0 a[i]x i . We let a be a polynomial column vector and the

coefficients of a are stored in a two-dimensional array a[l][n], where l is the column length of the

vector. Set A to be a polynomial matrix, and its coefficients are stored in a three-dimensional array

a[k][l][n]. Assume the input polynomial coefficients are a[n] and b[n], and the output polynomial

coefficients are c[n]. Then, we need to compute c[i] = a[i] ·b[i] mod q in PWM, while in PWA, we

compute c[i] = a[i] + b[i] mod q.

In the Dilithium software reference design, each function only completes one PWM/PWA of two

polynomials, ensuring flexibility in software. However, we could explore a parallel architecture

to accelerate these computations in hardware. Take the polynomial matrix-vector multiplication

shown in Figure 4 as an example. Let A be a k × l polynomial matrix, and ai j represent polynomial

with length n. b is a polynomial vector, and bi j is the polynomial with length n. The polynomial

matrix-vector multiplication is divided into two steps. In step I (multiplication), each row of the

polynomial matrix A is multiplied by the polynomial vector b to get a row of polynomial vector

in polynomial matrix C. In step II (addition), the polynomial vectors of each row in matrix C are

added correspondingly to obtain the polynomial column vector d.

There are two methods to compute the multiplication of step I. In method 1, one row of the

matrix A is taken and multiplied by the column vector b; in method 2, one column of matrix A is

taken and multiplied by one polynomial in the column vector b. Both methods need to transmit

k × l × n coefficients of the matrix A. However, for vector b, method 1 needs to transmit k × l × n
coefficients, while method 2 only needs to transmit l ×n coefficients. In method 2, the polynomial

b is reused to multiply with the column vector of length k , so the data transmission overhead of

vector b is only 1/k times of method 1. Therefore, we designed the hardware modules for PWM

according to method 2, which significantly reduces the number of data transfers.

The PWM algorithm is designed as shown in Algorithm 6. The vector length k is configurable:

When k = 1, it is used to accelerate the point-wise multiplication of two polynomials. When k
is greater than 1, it is used to compute the point-wise multiplication of the polynomial column

vector and the polynomial. In our design, the transmitted polynomial a is reused to multiply with

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:13

Fig. 5. Point-wise multiplication design architecture.

all the polynomials in vector b, thus reducing the transmission of polynomial a from k to only

1 time. Based on the aforementioned method, we design the hardware architecture of PWM as

shown in Figure 5. The length counter is a 4-bit counter to count the length of a polynomial vector

(corresponding to Step 1 in Algorithm 6). The address generator is an 8-bit counter to generate the

read/write address of the RAM_1 (corresponding to Step 2 in Algorithm 6). Note that the coeffi-

cients of polynomial a are stored in the RAM_1, while the coefficients of b are read directly from

the input FIFO. There are three control states in the PWM module. First, the polynomial a is read

from the input FIFO to the RAM_1 in the read state. Second, two multipliers receive data from the

Input FIFO and the RAM_1. The multipliers complete the point-wise multiplication and modular

reduction operations in the multiplication state. At the same time, the multiplication results are

written to the output FIFO. Reading, computing, and writing the data are carried out in a pipelined

manner. The main computation is to perform multiplication with DSPs and do modular reduction

afterwards (corresponding to Step 3 in Algorithm 6). For the two modular multiplication units, one

is shared with the NTT module, and the other is designed in this module.

ALGORITHM 6: Vectorized Point-wise Multiplication

Input: Polynomial a with coefficient array a[n]

Input: Polynomial vector b with coefficient array b[k][n]

Output: Polynomial vector r = b · a
1: for i = 0; i < k ; i++ // Vectorized read counter design in hardware. The k is configurable using software.

2: for j = 0; j < n; j++ // Single polynomial read counter design in hardware. The n is fixed to 256 in hardware.

3: r [i][j] = a[j] · b[i][j] mod q // Parallel multiplication unit design in hardware (two modular multipliers).

4: end for

5: end for

6: Return r with coefficient array r [k][n]

There are two methods to compute the polynomial addition (i.e., step II) in Figure 4. In method

a, two polynomials c00 and c01 are transmitted from the software to the hardware for computation

first. Then, the temporary result ct1 is transmitted back to software. Next, the polynomials ct1

and c02 are transmitted and computed following the above process repeatedly until the end of the

computation. This method is flexible for parameterized design but requires a 3(l−1)×n coefficients

transmission overhead.

To reduce the transmission workload, we propose method b, in which the temporary results are

kept in hardware for further reuse. Only the polynomials in the same row and the final results

are transmitted. Both methods need to transmit l × n input coefficients and n output coefficients.

However, method a needs to additionally transmit (l − 2) × n intermediate input coefficients and

(l −−2) ×n intermediate output coefficients. Therefore, the vectorized PWA is designed according

to method b to reduce the number of data transfers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:14 G. Mao et al.

Fig. 6. Point-wise addition design architecture.

ALGORITHM 7: Vectorized Point-wise Addition
Input: Polynomial a with coefficient array a[n]

Input: Polynomial vector b with coefficient array b[l − 1][n]

Output: Polynomial r with coefficient array r [n]

1: for i = 0; i < l − 1; i++ // Vectorized read counter design in hardware. The l is configurable using software.

2: for j = 0; j < n; j++ // Single polynomial read counter design in hardware. The n is fixed to 256 in hardware.

3: if i == 0

4: r [j] = a[j] ± b[i][j] mod q // Parallel addition unit design in hardware (two modular adders).

5: else

6: r [j] = r [j] + b[i][j] mod q // Two modular adders (reuse the two adders in Step 4).

7: end if

8: end for

9: end for

10: Return r

The PWA algorithm is shown in Algorithm 7. The PWA algorithm could perform different com-

putations: When l = 2 and configured as addition/subtraction, point-wise addition/subtraction of

two polynomials is computed; when l is greater than 2, point-wise addition of polynomial vector

of length l is conducted. From the above analysis, our vectorized addition method can reduce the

data transmission from 3(l − 1) × n coefficients to (l + 1) × n coefficients. Based on Algorithm 7,

we design the hardware architecture of PWA as shown in Figure 6. The length counter is a 4-bit

counter to count the length of a polynomial vector (corresponding to Step 1 in Algorithm 7). The

address generator is an 8-bit counter to generate the read/write address of the RAM_1 and RAM_2

(corresponding to Step 2 in Algorithm 7). There are three computation states in hardware. The

polynomial is read from the input FIFO into the RAM_1 in the read state. If l = 2, then it will

directly enter the final state to complete point-wise addition/subtraction and write data into the

output FIFO (corresponding to Step 4 in Algorithm 7). Subtraction is achieved by taking the nega-

tive of the input FIFO data and then by addition. If l is greater than 2, it will first enter the second

add state after the first read state, perform point-wise additions (corresponding to the Step 5 in

Algorithm 7), and then enter the final state to complete the last set of point-wise addition and

write data to the output FIFO at the same time (corresponding to the Step 4 in Algorithm 7). Two

adders receive data from the RAM and the input FIFO when performing point-wise addition, and

then another two adders are used to compute modular reduction over q. The RAM_1 and RAM_2

take turns sending and receiving data in add_state, controlled by the 1-bit flip signal.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:15

Fig. 7. SHAKE design diagram. (a) Hardware architecture and pipeline design of the SHAKE module.

(b) SHAKE input control state diagram. (c) SHAKE output control state diagram.

3.4 SHAKE Module with Unified Sampling

SHAKE functions include SHAKE128 and SHAKE256. They are extendable-output functions based

on the Keccak algorithm in SHA-3 family, which takes any input size and generates any output

length. Based on the profiling results in Figure 1, it is the most time-consuming function, and accel-

erating this function would significantly improve the overall system performance. In the Dilithium

algorithm, the SHAKE256 generates random seeds, and its outputs can be used by other operations

directly. However, the SHAKE128 is used to generate numbers such as the polynomial matrix A,

short vectors s1, and s2, which should satisfy some specific requirements. In this case, the outputs

of the SHAKE128 need to be sampled to meet the corresponding requirements. The Keccak func-

tion and the samplers in SHAKE are implemented separately in the software implementation. First,

the Keccak function generates a certain number of random seeds. Then the seeds pass through the

samplers for sampling. If the output cannot meet the requirements after sampling, then the afore-

mentioned operations need to be performed again. However, in the software/hardware co-design,

if the Keccak function and the sampler are implemented separately, then the data transmission

overhead would be non-negligible. In addition, extra control logic and space for restoration are

required. Therefore, the proposed design tightly combines the Keccak function and samplers into

one module to save transmission time and design space.

The hardware design of SHAKE is shown in Figure 7. Figure 7(a) shows the data flow of the

SHAKE module. This module mainly consists of three units, including the read ctrl unit, the Keecak

core unit, and the sampling unit. The read ctrl unit controls the read data flow, which is shown in

Figure 7(b). In the read_state, data is read from the input FIFO to the Keccak core unit. When the

Keccak core unit is full and cannot receive new input data, a 1-bit full signal is sent. The control

state then transfers to the hold state, where a hold counter is used to count until the end of the

hold state.

The Keccak core unit is adjusted and improved based on the design in Reference [32]. The newly

designed Keccak core contains additional registers to hold the state in the permutation block. The

1-bit hold signal is to control the hold state, so the permutation process can be paused to wait for

the end of the sampling process. The input padder accepts 64 bits of input data every cycle and

gets 1,344 bits with padding after 17 or 21 cycles. The valid output bits of the input padder are

1,088 or 1,344, depending on the 2-bit shake_mode signal. The final output is obtained through

repeated permutation, and all the processes cost 48 cycles. The valid final output bits are 1,088

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:16 G. Mao et al.

or 1,344, depending on the 2-bit shake_mode signal. The intermediate 1,600-bit data XOR with

1,344-bit from input padder until all the input bits are absorbed. The 1-bit last signal indicates the

last input, and the 3-bit byte signal is the valid input bytes. The final 1,344-bit can go back into a

new round of permutation with 48 cycles until no more output bits are required. The 1-bit squeeze

signal controls the output bits’ continued generation.

The sampling unit has four stages, and each stage consumes one hardware cycle. An FSM is

designed to indicate the computing state of the Keccak core unit in Figure 7(c). If the Keccak core

unit produces a valid output, then the state will go to the output_state. In the output_state, when

the 1-bit output_ready signal is high, the 1,344-bit output from the Keccak core unit is saved, and

the sampling process starts. In stage 1, the number selection block selects the bits of the sampled

number, and address counters are used to generate the number address. The sampled numbers

are selected according to the sampling type. Two 4-bit sampled numbers in rej_eta sampling are

generated from the selected 8-bit number, and two 23-bit numbers in rej_uniform sampling are

generated from the selected 48-bit number. However, for the SHAKE256 output, the 64-bit number

is sent to the output FIFO directly without sampling. In stage 2, two combined samplers are used for

sampling. One 23-bit temporary number is the previously saved sampled number, while the other

two 23-bit numbers are the current sampled number. In stage 3, two 23-bit numbers will be selected

to output if these numbers meet the requirements. In stage 4, the post transform computation is

performed for the two selected numbers in rej_eta sampling. Since the two samplers accept two

4-bit numbers in one cycle during the rej_eta sampling process, they need at least 168 cycles to

complete the sampling, which is far more than 48 cycles in permutation. Therefore, in rej_eta

sampling, we extend the output cycles to wait for the completion of the sampling process, since,

if we enlarge the bit width of the sampler unit, then the used logic resources would be increased

significantly. As long as the size of the short vector that needs to be sampled is relatively small,

the extension of the clock cycle is a better tradeoff.

4 SOFTWARE/HARDWARE CO-DESIGN ANALYSIS

4.1 Hardware Design and Test

The hardware is designed using Verilog HDL. The designed hardware is synthesized and imple-

mented in Xilinx Vivado 2020.2. The selected device is Zynq-7000 XC7Z020-1. Our design has four

main modules: NTT, PWM, PWA, and SHAKE. The four hardware modules are integrated and con-

nected to PS for function acceleration. Each module can be parameterized to accelerate different

kinds of functions. Configurability has the following costs in hardware: The first is the need to

combine different computing units; the second is to provide an external configuration interface;

the third is that it takes extra time to configure. Our design uses the lightweight AXI-Lite bus

for configuration. It has a simple structure and consumes very few cycles by configuring 32-bit

registers, so the cost of configuration is low. To analyze the performance of function acceleration,

each of these modules is tested individually. Note that during the individual module test, the 64-

bit width input and output FIFOs are also included and configured as read and write interfaces.

The implementation results in terms of hardware resources are shown in Table 4, while the cycle

counts for different parameter settings are shown in Table 5.

4.1.1 Hybrid NTT/INTT Module. The Hybrid NTT/INTT module performs both the NTT and

INTT having the same polynomial length n and modulus q in Dilithium. The configurability of this

module is by adding multiplexers and some arithmetic units based on Algorithm 4. The selection

of NTT and INTT functions only needs the 1-bit ntt_sel signal. The module contains only one

butterfly unit, which consumes two DSPs. The cycle counts of lengthn NTT/INTT mainly includes
n
2 ·2 cycles for FIFOs reading and writing, n

2 · log2 n cycles for NTT calculation, and 15 · log2 n cycles

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:17

Table 4. Hardware Resource of Individual Modules and System Integration

HW Module LUT Slice FF DSP BRAM Fmax (MHz)

NTT/INTT 799 328 971 2 4.5 172

PWM 561 257 796 4 3 178

PWA 527 209 645 0 4 238

SHAKE 8,472 2,411 5,035 0 2 169

HW_ACC_IP 9,365 2,826 6,811 4 5 161

PL_HW_system 13,128 (24%) 4,379 (32%) 11,556 (10%) 4 (1.8%) 14 (10%) 150

Table 5. Hardware Cycles of Each Function under Different

Parameter Settings

HW Module Function HW cycles

NTT/INTT
ntt (n = 256) 1,405

intt (n = 256) 1,405

PWM
point_wise_mul (k = 1) 269

point_wise_mul (k = 6) 911

PWA

point_wise_add (l = 2) 265

point_wise_sub (l = 2) 265

point_wise_add (l = 5) 665

SHAKE

H256 (32, 96) 81

H256 (1,952, 48) 761

H128+rej_uniform (n = 256) 284

H128+rej_eta_4 (n = 256) 302

H128+rej_eta_2 (n = 256) 214

for pipeline delay in different NTT stages. The hybrid structure uses the same cycles for both the

NTT and INTT computation, which is 1,405 cycles in Dilithium of n = 256 and q = 8,380,417. The

critical path in this module lies in the modular reduction unit.

4.1.2 PWM Module. The PWM module realizes the point-wise multiplication of two polyno-

mials. The module could also multiply a variable-length polynomial vector. The configurability

is achieved by setting the length counter through the 4-bit pwm_vector_len signal. Two modular

multiplication units in the PWM module are used to match the transmission speed of input and

output FIFOs. The PWM module needs n
2 cycles to read the first polynomial. We bury the reading

time of the later polynomials into the pipeline computation. There are n
2 · k cycles for point-wise

multiplication and eight cycles for modular multiplication in the pipeline. When the polynomial

vector length k under test is set to six (i.e., the length of NIST security level 3), the cycle cost is 911.

4.1.3 PWA Module. The PWA module computes point-wise addition and subtraction of two

polynomials. The negation of the numbers for subtraction is hidden in the pipeline. The selection

of addition or subtraction function is to use the 1-bit pwa_add_sub signal to depend whether the

negative sign is used in the pipeline computation. The PWA module can also be configured to com-

pute the point-wise addition of polynomial vectors. The polynomial vector length is configured

by setting the length counter through the 4-bit pwa_vector_len signal. The modular addition unit

number is set to two to match the data transmission speed of FIFOs. The computing time mainly

includes n
2 cycles for data reading of the first polynomials and n

2 · (l − 1) cycles of point-wise

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:18 G. Mao et al.

addition. The vector length is parameter configurable. When setting the tested length l = 5 (i.e.,

the length of NIST security level 3), the cycle cost is 665.

4.1.4 SHAKE Module. The SHAKE module completes the SHA-3 related operations and gener-

ates the outputs of the SHAKE256 and the sampled results of the SHAKE128. This module con-

sumes the highest portion of hardware resources, because a relatively high-speed Keccak core

would not become the performance bottleneck of the whole system. The configurability of the

SHAKE module is achieved by length-configurable input and output counters, the multifunctional

Keccak Core, and versatile samplers. The signals defined in Reg2 and Reg3 in Table 3 are all used

to configure the parameters in the SHAE module. The first tested SHAKE256 function works as a

PRNG, which requires 32-byte inputs and obtains 96-byte outputs. The second tested SHAKE256

function works as a collision-resistant hash (CRH) function, which requires 1,952-bytes in-

puts and obtains 48 bytes outputs. For the other three SHAKE128-related functions, the inputs

are 34 bytes, and the outputs are polynomials with a length of 256. All three functions complete

the sampling process in the interval between two rounds of Keccak output (each round consumes

48 cycles for permutation). In rej_uniform sampling, at least five rounds of Keccak permutations

are required, since two samplers receive 48 bits each cycle, and the sampling acceptance rate is 99%.

In rej_eta sampling, two samplers require 8 bits each cycle. For each round (1,344-bit output), 168

cycles are consumed for sampling, which is more than 48 cycles. Therefore, the hold signal is pulled

high to extend two round interval cycles from 48 to 168 to wait for the end of the sampling process.

4.1.5 HW System Integration. The HW_ACC_IP integrates the four modules, while the PL_HW

system integrates all hardware modules on the PL, including the HW_ACC_IP, AXI-DMA, AXI

interconnection, system clock, and the concat module. The maximum working frequency of the

PL_HW_system reaches 150 MHz, which is lower than the individual modules. This is because the

logic congestion during place and route introduces longer wiring paths. Note that the integrated

HW_ACC_IP uses approximately 6.7% less LUT than the sum of the individual modules, because

the hardware resource reuse technique is applied during the system integration. More specifically,

the modular reduction units are shared between the hybrid NTT/INTT module and the PWM

module; thus, four DSPs instead of six are used in the HW_ACC_IP. The BRAMs used by the

hybrid NTT/INTT, PWM, and PWA modules are also shared; thus, only five BRAMs are deployed

in the HW_ACC_IP.

4.2 Firmware Design and Test

The hardware system in PL is connected with an on-chip ARM Cortex-A9 processor and a 512 MB

DDR memory. The processor is working under 666 MHz. After interconnection, the hardware

bitstream is generated and exported to Vitis 2020.2. The Vitis is used for software design and sys-

tem verification. The designed software is written in C/C++. The software includes the original

Dilithium reference implementation, the firmware program to initiate the hardware accelerator,

and the testing program to evaluate the design performance. The Dilithium reference implemen-

tation provides well-optimized algorithms for software execution, so we choose the reference im-

plementation program as the software benchmark and use some of the functions directly in our

design.

The firmware program is to provide the control, monitoring, and data manipulation of the hard-

ware accelerator. It manages the data read and write process by sending the start address and

length of the data to the DMA controller. It controls the start and parameter configuration of each

hardware module by configuring the AIX DMA and registers Reg0-Reg3 in Figure 2. The firmware

program also flushes the data to maintain the data consistency between the hardware acceler-

ator and host processor when the cache is ON. We configure different parameters through the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:19

Table 6. Function Acceleration Results with Different Parameter Configurations

Processor cache turn on Processor cache turn off

Function
SW

time(μs)
SW/HW

time(μs)
Speedup

SW

time(μs)
SW/HW

time(μs)
Speedup

ntt (n = 256) 177.6 15.6 11.3 2,239.3 14.2 157.0

intt (n = 256) 227.4 15.6 14.5 3,113.0 14.2 218.4

point_wise_mul (k = 1) 50.7 12.7 3.9 731.4 11.2 65.0

point_wise_mul (k = 6) 305.9 36.7 8.3 4,381.1 16.4 266.3

point_wise_add (l = 2) 24.8 12.6 2.0 457.9 11.2 40.8

point_wise_sub (l = 2) 24.7 12.5 2.0 457.8 11.2 40.6

point_wise_add (l = 5) 52.4 16.6 3.1 994.3 11.6 85.2

H256 (32, 96) 63.3 4.0 15.5 1,007.2 6.3 159.6

H256 (1,952, 48) 954.0 9.8 96.4 14,908.5 9.5 1,553.2

H128+rej_uniform (n = 256) 341.6 11.3 30.0 5,499.2 11.7 467.8

H128+rej_eta_4 (n = 256) 145.5 11.6 12.4 2,333.1 11.9 194.8

H128+rej_eta_2 (n = 256) 81.5 11.0 7.4 1,293.3 11.1 115.6

matrix_mul (k = 6, l = 5)
(Before SW adjustment)

1,194.4

298.8 4.0

17,910.0

281.4 63.6

matrix_mul (k = 6, l = 5)
(After SW adjustment)

229.2 5.2 212.6 84.2

firmware program to test the acceleration results of each function. The test results are as shown

in Table 6. Due to the time difference of the software execution, all the time indices are the av-

erage of 1,000 measurements. To evaluate the speed performance of each function, we compare

the computing time of the pure software and software/hardware co-design for each function. The

tested software/hardware co-design is to use the designed firmware program to call the hardware

accelerator. In terms of pure software implementation, the ARM Cortex-A9 processor is used by

turning the processor’s cache ON and OFF. This is because, in the Internet of Things (IoT) ap-

plication scenarios, the energy-efficient processors might not have cache support. To demonstrate

the use of accelerator in different embedded devices, the firmware program is tested with the cache

turned ON and OFF. The speedup is the ratio of the SW time to SW/HW time, which indicates the

software/hardware acceleration improvement over the pure software.

As shown in Table 6, the pure software with cache turn ON has around 12–18× speedup com-

pared to the cache turn OFF time. However, the performance improvement of cache is insignificant

when compared to the SW/HW time. This is because the cache could significantly accelerate the

arithmetic computation in pure software design. While the firmware program mainly completes

interface calls and is rarely affected by the cache. In addition, when the cache is ON, data flush

functions are required, so this factor increases the SW/HW time. For example, due to the long data

flush time, the tested function point_wise_mul (k = 6) consumes significantly more time when the

cache is ON. However, DMA preparation time is shorter if the cache is ON, decreasing the total

execution time. This helps to explain why the time of the H256 (32, 96) function is shorter when the

cache is on. The proposed software/hardware system has 2–96× speedup compared to the pure

software implementation. The SW/HW acceleration of point_wise_mul and point_wise_add func-

tion increase with the parameter k and l , respectively, because the vectorized method is applied to

reduce the data transmission amounts. The tested point_wise_mul function is directly used for the

polynomial vector multiplication acceleration in Algorithms 2,3. Thanks to the high-performance

architecture design of the SHAKE module, the H256 (1,952, 48) function achieves a speedup of 96

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:20 G. Mao et al.

when compared with the pure software time. This result demonstrates that the high-speed archi-

tecture design for the time-consuming functions gives a good tradeoff.

4.3 Software Adjustment and Operational Analysis

The polynomial matrix-vector multiplication is the main algebraic operation in the scheme. Ac-

cording to Figure 4, the polynomial matrix-vector multiplication first performs multiplication op-

erations and then performs addition operations. We design multiplication and addition units to

accelerate this computation according to method 2 and method b, respectively. However, the orig-

inal software algorithm is designed according to method 1 and method a, so directly applying our

designed hardware for acceleration is not efficient enough. As shown in Algorithm 1, matrix A is

obtained with SHAKE128 and the sampling function (i.e., Step 4) and then performs the polyno-

mial matrix-vector multiplication (i.e., Step 6). The sampling function of step 4 is to sample by row,

but in method 2 of Figure 4, we need to transfer the data of matrix A by column. The mismatched

arrangement of rows and columns between sampling and multiplication of matrix A will lead to

inefficient DMA transfers. Because DMA is most efficient when data is continuously transmitted,

and the inconsistency of rows and columns requires data to be transmitted in segments, thereby

reducing transmission efficiency. Here, we adjust the sampling order of matrix A, from sampling

by row to sampling by column. Since different rows and columns are sampled independently, after

we modify the sampling order, we can ensure that the obtained matrix A is consistent with the

original one without affecting the subsequent calculation results. In addition, after adjustment, no

additional memory is needed to store matrix A, since the row and column ordering of sampling

and computation is consistent. Otherwise, we need to create an additional array to store matrix A
after the multiplication calculation, increasing memory usage. The matrix_mul (k = 6, l = 5) is

calculated by first using point_wise_mul (k = 6) five times to obtain an intermediate matrix and

then using point_wise_add (l = 5) six times to obtain the final output, as shown in the two steps

of Figure 4. We compare the computational efficiency before and after the adjustment in Table 6.

We can calculate that after adjustment, the efficiency is improved by (1− 229.2
298.8) = 23.3% with cache

ON and (1 − 212.6
281.4) = 24.4% with cache OFF.

The SW/HW co-design execution flow of each accelerated function in Table 6 is summarized

as shown in the Figure 8. Figure 8(a) shows the common execution order to call the hardware ac-

celerator. This process includes the register configuration of the design parameters and the start

signal, cache flush to keep data consistency between cache and DDR, DMA read to send the read

data address and length to the DMA module, HW compute for computation, and DMA write to

transfer the results back to DDR memory. The configurability of the whole system is achieved by

the register configuration process. For the NTT and SHAKE computation, as shown in Figure 8(b),

hardware accelerators are working in pipelined with DMA read and write; thus, parts of the DMA

read and write time are buried into the hardware computation. For the point-wise multiplication

in polynomial vector multiplication and polynomial matrix-vector multiplication, as shown in

Figure 8(c), DMA read, hardware computation, and DMA write are deeply pipelined; thus, the

data transmission overhead is reduced significantly. In terms of the point-wise addition, as shown

in Figure 8(d), the addresses of the vectors may be discontinuous; thus, multiple read data transfers

are initiated. However, with the help of FIFO to buffer the data, the data transfer time can still be

deeply pipelined with hardware calculations. The whole system can work efficiently by using the

above three types of execution flow.

4.4 Overall Software/Hardware Co-design Speedup

After the system integration, we evaluated and compared the Dilithium signature algorithms on

both pure software and hardware-software co-design. The transmission interface is configured

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:21

Fig. 8. Execution flow of hardware accelerator. (a) Common interface calling flow. (b) Execution flow with

pipelined hardware design in NTT and SHAKE. (c) Execution flow with deeply pipelined hardware design in

vectorized multiplication. (d) Execution flow with deeply pipelined hardware design in vectorized addition.

Fig. 9. Dilithium average compute time. (a)compute with processor cache ON. (b)compute with processor

cache OFF.

according to the parameters of Dilithium. Moreover, the hardware accelerator is designed to be

fully parameter configurable; there is no need to modify the hardware design and transmission

interface to adapt to different security levels. The Dilithium algorithms are tested 1,000 times, and

the average running time is recorded in Figure 9. The speedup of the software-hardware co-design

to pure software is calculated accordingly and illustrated in Figure 10. In Figures 9 and 10, K refers

to Key generation, S refers to Sign, V refers to Verify, and 2, 3, and 5 are the corresponding NIST

security levels.

As shown in Figure 9, for the same security level, the Key generation and Verify algorithms

take similar computing time, while the Sign algorithm consumes 3–5 more time. This is because,

during the Sign process, the signature rejection would introduce a re-computation of Sign, thus

increasing the computing time. For different security levels, the computing time increases with

the expansion of the corresponding parameters.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:22 G. Mao et al.

Fig. 10. Dilithium speedup for hardware acceleration.

Table 7. Comparison of NTT Hardware Accelerator

Design Modulus Device cycles Freq.(MHz) LUT/Slice/DSP LUT/Slice/DSP ×103 cycles

[46] 8,380,417 Xilinx Artix-7 1,170 216 2,044/N/A/16 2,391/N/A/18.7

[23] 8,380,417 Xilinx Virtex-7 533 N/A 444/N/A/17 241/N/A/9.06

[16] 1,049,089 Xilinx Spatan-6 220 235 N/A/14K/128 N/A/3,080/28.1

[14] N/A Xilinx Spatan-6 4,066 233 533/214/1 2,167/870/4.06

This work 8,380,417 Xilinx Artix-7 1,405 172 799/328/2 1,122/460/2.8

Considering the speedup in Figure 10, the Key generation algorithm has the highest accelera-

tion, while the Sign algorithm has the lowest index. This is because the Sign algorithm needs to

unpack the generated key and pack the generated signature. These operations have no parallel

property; thus, their computation would be serial in the hardware. To alleviate the usage of hard-

ware resources for other operations, the pack and unpack operations are calculated in the software.

In summary, when the cache is ON, our hardware-software co-design system could accelerate the

Dilithium algorithms by 6.3–12.5×. When the cache is OFF, it could accelerate the algorithms by

11.2–33.2×.

5 COMPARISON WITH RELATED WORKS

5.1 Comparison of Polynomial Operations

Polynomial operations are the most important operations in lattice-based cryptography. Many de-

signs explore different NTT architectures to optimize polynomial operations. The designs in Ref-

erences [10, 14, 16] are specially optimized for the NTT operation, and the designs in References

[22, 42–44, 46] are optimized for the NTT design in post-quantum cryptography schemes. Table 7

compares the performance and resource consumption of the NTT hardware accelerator in different

designs. The performance is to measure the consumed hardware cycles. The resource consumption

compares the used LUT, Slice, and DSPs. The area-time product (ATP) is calculated for compar-

ison by multiplying the consumed hardware cycles by the number of LUT, Slice, and DSPs. For a

fair comparison, the polynomial length n is 256 in all compared designs.

Zhou et al. [46] designed a hardware architecture for polynomial vector operations, including

NTT, INTT, point-wise multiplication, and point-wise addition. In Reference [46], the twiddle fac-

tor generation is on the fly and works simultaneously with butterfly operations. Different computa-

tion flows were designed for CT-NTT and GS-INTT. The computation of NTT and INTT required

an additional stage point-wise multiplication. In contrast, we design a hybrid architecture for both

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:23

NTT and INTT computation. We explore the symmetry of the twiddle factor in NTT and INTT

and store the precomputed twiddle factor in ROM. Meanwhile, we achieve a more compact design

in hybrid architecture by combining control logic and resuing computing resources. Furthermore,

we do not need an extra point-wise multiplication stage, because we have incorporated the addi-

tional required point-wise multiplication with the precomputed twiddle factor and the butterfly

unit computation. Our design consumes longer cycles, because we additionally include the data

read and write process between the FIFO and RAM. Our NTT module does not include the point-

wise multiplication and point-wise addition, because we provide dedicated acceleration in other

modules by fully exploiting the computational properties of MLWE computation. In comparison,

our design is more compact and achieves a better ATP.

Land et al. [23] designed a high-speed NTT module, which contained two independent BFUs

for parallel computation, and used DSP for all arithmetic operations to achieve low area, high-

frequency design. Their design consumed fewer LUTs and hardware cycles, because it did not need

to connect to the processor, thus reducing control logic and read and write cycles. Additionally, the

design contains two butterfly units for higher parallelism, while we only have one butterfly unit.

In comparison, our design consumes fewer DSPs and is more suitable for resource-constrained

embedded devices to save DSP resources. Feng et al. [16] proposed a hardware architecture for the

multi-lane NTT algorithm, where d (d = 16) lanes of butterfly units worked in parallel to complete

the NTT calculation. Their design is highly parallel, while our module contains only one comput-

ing unit. Compared with Reference [16], our design achieves better ATP in both slice and DSP

usage. Du et al. [14] designed an efficient polynomial multiplier to multiply two polynomials. The

designed architecture transformed two polynomials into the NTT domain, completed point-wise

multiplication, and then transformed back to the normal domain. In our accelerated algorithm,

most data is sampled in the NTT domain. It only requires a small amount of NTT calculations

while a larger amount of INTT calculations. Therefore, our modules perform NTT and INTT cal-

culations, individually. To sum up, our polynomial operation accelerator achieves a good balance

between performance and resource usage, which is suitable for the software/hardware co-design

acceleration.

5.2 Comparison of Complete Signature Scheme

Our SW/HW co-design put the software design in an embedded processor and deployed the most

time-consuming tasks in an FPGA for acceleration. Many works used similar design principles to

speed up the Dilithium algorithm and other signature algorithms. Table 8 makes a detailed com-

parison of our design with other related SW/HW co-design. However, some works used different

design principles, such as deploying the complete algorithm in an FPGA. For complete compar-

isons, we list the results of pure hardware design using FPGA. Table 9 compares the results with

the related pure hardware designs. When comparing the performance of the sign (S), we use the

best-case scenario, where the signature is successfully generated after only one loop without re-

jection in Algorithm 2. According to the reference performance of Skylake CPU in Reference [3]

and our analysis results in ARM Cortex-A9, the average cycle of Sign (S) is 4× of the cycle Key

Gen (K). While in the best case, the cycle of Sign (S) is 1.5× of the cycle of Key Gen (K). Since most

designs provided the best case results, we used the best case in Sign (S) for fair comparisons.

Some of the compared Dilithium designs are based on NIST PQC round-2 parameters. There

are some differences between the round-2 and round-3 designs. In round-3 design, the used public

key matrix size is changed from 4 × 3 and 5 × 4, to 4 × 4 in security level 2. The non-zero co-

efficients output in the SampleInBall function changed from 60 to 39 and 49 for security level 2

and 3. The dropped bits of the public key are reduced from 14 to 13. The sampling range of mask-

ing polynomial y is changed to power-of-2 for simplicity. According to the Dilithium-Algorithm

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:24 G. Mao et al.

Table 8. Comparison with Related SW/HW Co-design

Schemea Platform
Freq.

(MHz)
LUT

Time (ms)

(K/S/V)

LUT × Time

×103 (K/S/V)
OPTb

(ms)

Thro.c

(OP/s)

[46] Dilithium-2d

Xilinx Zynq 7000

XC7Z020

2CLG400I

533(SW)

100(HW)

2,620I N/A/15.6/11.8 N/A/40.8/30.9 27.4e 36.4

6,253I I N/A/15.1/11.5 N/A/94.4/71.9 26.6e 37.5

2,620I I I N/A/12.6/9.94 N/A/33.0/26.0 22.5e 44.3

Altera

Cyclone IV

100(SW)

100(HW)

3,908IV N/A/2,030/465 N/A/7,933/1,817 2,495e 0.4

8,568V N/A/391/128 N/A/3,350/1,096 519e 1.9

[4]
Dilithium-2d TSMC 40nm LP

CMOS ASIC

72(SW)

72(SW)

N/A 2.3/8.8/1.1 N/A 12.2 81.9

Dilithium-3d N/A 3.1/11.3/3.8 N/A 18.2 54.9

[19] Dilithium-5
Xilinx Zynq 7000

XC7Z010-1

667(SW)

163(HW)
N/A 0.50/0.60/0.54 N/A 1.64 609

[45] SM2f Xilinx Zynq 7000
666(SW)

50(HW)
13,821 9.7/9.3/19 134/128/262 20.9 47.8

This

work

Dilithium-2 Xilinx Zynq7000

XC7Z020

CLG484-1

666(SW)

150(HW)
13,128

1.1/2.3/1.1 14.4/30.1/14.4 4.5 222

Dilithium-3 1.5/3.1/1.6 19.6/40.6/21.0 6.2 161

Dilithium-5 2.2/4.5/2.3 28.8/59.0/30.1 9.0 111

a 2,3,5 refer to NIST security level. b The operation (OP) includes all the procedures of Dilithium (K+S+V). The

operation time (OPT) is the time of each operation. c The throughput (Thro.) is the number of operations per second

(OP/s). d NIST PQC round-2 implementation. e The operation here only includes S and V, but not K. f SM2 is an elliptic

curve-based public key standard, which cannot resist attacks by quantum computers. I ARM Cortex-A9 +

polynominal(HW). I I ARM Cortex-A9 + polynominal (HW) + Keccak (HW). I I I ARM Cortex-A9 + polynominal(HW) +

Keccak(NEON instructions). IV Nios II + polynominal(HW). V Nios II + polynominal(HW) + Keccak(HW).

specifications [3, 15], compared with the round-2 security level 2 algorithm, the round-3 security

level 2 algorithm consumes cycles of 81% (K), 66% (S), 87% (V), while the round-3 security level 3

algorithm consumes cycles of 146% (K), 115% (S), 129% (V) running on the Skylake CPU. At the

same security level, the round-3 algorithm performance is better due to simplifying the above

operations and optimizing the software code. However, the parts we do hardware acceleration,

including NTT, PWM, PWA, and SHAKE operations, have not changed. The changed parts only

affect a small part of the software implementation and have no significant impact on the design

performance comparison. Our design has achieved acceleration for all security levels. Therefore,

the acceleration performance could be fairly compared with other works.

Zhou et al. [46] presented an SW/HW co-design of Dilithium with a tradeoff between speed and

resource utilization. The author designed hardware accelerators for polynomial multiplication and

the SHA-3 Keccak function. The author implemented the design on Xilinx Zynq 7000 XC7Z020,

which is most comparable to our design. The author provided three hardware acceleration meth-

ods in this platform: polynomial (I), polynomial + Keccak (II), and polynomial + NEON vector

instruction acceleration for Keccak (III). However, these three methods can only provide no more

than 2× speedup, while our design achieves 7–12× speedup. Our speedup is higher because we con-

sider the computational characteristic of MLWE to accelerate point multiplication and point-wise

addition. Meanwhile, we combine the Keccak function with different sampling functions to speed

up SHA-3 related RPNG functions. The author obtained lower speed and lower throughput on the

Altera Cyclone IV platform because of the lower performance of the Nios II processor; therefore,

the overall system performance decreases in this case. Overall, our design has higher speedup and

higher throughput and achieves a better balance between performance and resource consumption.

Banerjee et al. [4] presented a cryptography processor with NTT acceleration architecture and

a Keccak-based PRNG core with a discrete distribution sampler architecture. Their design used a

low-power RISC-V microprocessor for software computations and custom hardware architecture

for time-consuming operations. This work demonstrated several NIST round-2 algorithms, includ-

ing NewHope, qTESLA, CRYSTALS-Dilithium, and so on. The processor was fabricated in TSMC

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

High-performance and Configurable SW/HW Co-design 44:25

Table 9. Comparison with Other Pure HW Design

Scheme Platform
Freq.

(MHz)
LUT/FF/DSP/BRAM

Time (ms)

(K/S/V)

OPT

(ms)

Thro.

(OP/s)

[41] Dilithium-2b

Xilinx Artix-7

HLS

implementation

114

86,646/17,674/N/A/N/A,

90,567/21,160/N/A/N/A,

65,274/15,169/N/A/N/A

2.0/14.2/2.5 18.7 53.4

[37] Dilithium-2b Xilinx Virtex-7

UltraScale+

350,

333,

158

54,183/25,236/182/15,

68,461/86,295/965/145,

61,738/34,963/316/18

0.05/0.06/0.09 0.21 4,758

[6]

Dilithium-2

Xilinx Artix-7 256 53,187/28,318/16/29

0.02/0.12/0.03 0.17 5,882

Dilithium-3 0.03/0.19/0.04 0.26 3,846

Dilithium-5 0.05/0.21/0.05 0.31 3,325

[19] Dilithium-5 Xilinx Artix-7 163 13,975/6,845/35/4 0.38/0.69/0.41 1.48 675

This

work

Dilithium-2 Xilinx Zynq7000

XC7Z020

CLG484-1

666 (SW)

150 (HW)
13,128/11,556/4/14д

1.1/2.3/1.1 4.5 222

Dilithium-3 1.5/3.1/1.6 6.2 161

Dilithium-5 2.2/4.5/2.3 9.0 111

b NIST PQC round-2 implementation. дThe consumed resources include all modules in PL (the designed accelerator,

AXI DMA, DDR interface, etc.).

40 nm low-power CMOS process. Our design further accelerates the point-wise operations for

MLWE computation. Because it is an ASIC-based design targeted for energy efficiency, the com-

puting system worked under a low working frequency of 75 MHz. Therefore, our proposed system

still surpasses their design in terms of throughput.

Gupta et al. [19] presented a pure hardware design of Dilithium on the Xilinx Artix-7 platform.

The authors also evaluated the design as a co-processor and fitted it into the Xilinx Zynq 7000

XC7Z010-1 platform. This work made all calculations in hardware, and the ARM Cortex-A9 proces-

sor was only used to complete the interface calls without participating in the calculation. However,

our design accelerates each function individually, requiring more data transfers in hardware and

software. Our design can be configured to run Key Gen, Sign, and Verify algorithms at all security

levels. Hence, our design provides higher flexibility.

Zheng et al. [45] present an SW/HW co-design of the SM2 digital signature algorithm on the Xil-

inx Zynq-7000 SoC platform. The author implemented point and modular operations in hardware

and the signature/verification algorithm flow in software to achieve performance balance. Our de-

sign uses a similar platform to achieve a comparable speedup. However, since SM2 is an elliptic

curve-based signature algorithm, it cannot resist the attack of quantum computers. Our design

shows that Dilithium can provide long-term security guarantees and achieve higher throughput

by using similar hardware resource consumption in SW/HW co-design.

Table 9 lists the results for some pure hardware designs. Soni et al. [41] mapped the C source code

of Dilithium into FPGA by using the High-Level Synthesis (HLS). The authors implemented the

Key generation, Sign, and Verify algorithms separately. Due to the low efficiency of HLS, their hard-

ware design used a relatively large amount of logic but still obtained lower throughput compared

with ours. Ricci et al. [37] presented the first hardware design of Dilithium on Virtex-7 UltraScale+

FPGAs. Beckwith et al. [6] presented a high-performance implementation of Dilithium combining

three major operations at all security levels. Gupta et al. [19] presented a lightweight hardware im-

plementation of Dilithium at security level 5. The design in Reference [19] is lightweight because

each module used a lightweight implementation. For example, the Keccak module in their design

consumed 4,200 LUTs, while ours consumed about 8,000 LUTs.

The pure hardware designs have a higher degree of parallelism and do not need to transfer

data between software and hardware. Hence, pure hardware implementation can achieve higher

throughput compared with SW/HW co-design. However, SW/HW co-design has some advantages.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

44:26 G. Mao et al.

First, SW/HW co-design only focuses on hardware designs of the computationally intensive parts,

which can reduce the system development time. Second, SW/HW co-design can reduce hardware

resource usage by realizing module reuse, allowing the system to apply more functions and al-

gorithms. Otherwise, deploying a single algorithm may occupy the resources of the entire board.

Third, SW/HW co-design has a higher flexibility. The proposed accelerator has already integrated

into the processor and it is easy to apply in real application scenarios. The communication inter-

face can be shared with other accelerators. Thus, it is easier to construct a more versatile system. In

addition, The deployment of algorithms may be different from the original algorithms when consid-

ering different application scenarios. In the SW/HW co-design, the software in the processor can

be easily upgraded and flexibly adjust the parameters in hardware, which can help algorithms bet-

ter integrate into different scenarios. If a more compact design is expected, then the SHA-3 core in

the design could be upgraded to be more lightweight, as we now use a relatively high-performance

core to maintain the performance.

6 CONCLUSIONS

This article presents a software/hardware co-design of the NIST PQC round-3 digital signature

scheme, CRYSTALS-Dilithium. For high speed, our accelerator designed and implemented hard-

ware modules, including a hybrid NTT/INTT, point-wise multiplier and adder, and SHAKE PRNG

with tightly coupled samplers. For flexibility, the ARM processor is cooperated with the afore-

mentioned hardware accelerator to compute Dilithium for different security levels. The hardware

is fully pipelined and parameterized and thus could perform different calculations according to

the configured parameters. We tested the hardware modules, analyzed individual function perfor-

mances, and verified the hardware acceleration results of the Dilithium algorithms. According to

the implementation results, our design consumes a reasonable amount of hardware resources and

obtains high acceleration results. Our software/hardware co-design achieves a good balance in

speed, resources, and flexibility compared with existing pure software and hardware designs.

A potential future work is integrating the hardware accelerator into the RISC-V processor and

targeting low-power IoT applications. It is worth exploring the design space for a more compact

design or designs with a higher degree of parallelism. It would also be interesting to analyze side-

channel attacks and explore approaches that would make our hardware accelerator resistant to

more advanced attacks.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] M. Ajtai. 1996. Generating hard instances of lattice problems (extended abstract). In Proceedings of the 28th Annual

ACM Symposium on Theory of Computing (STOC’96). Association for Computing Machinery, New York, NY, 99–108.

DOI:https://doi.org/10.1145/237814.237838

[2] Aydin Aysu, Bilgiday Yuce, and Patrick Schaumont. 2015. The future of real-time security: Latency-optimized lattice-

based digital signatures. ACM Trans. Embed. Comput. Syst. 14, 3 (Apr. 2015). DOI:https://doi.org/10.1145/2724714

[3] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. 2020. CRYSTALS-Dilithium–

algorithm specifications and supporting documentation. NIST Post-quant. Cryptog. Standardiz. Round 3 (2020).

[4] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. 2019. Sapphire: A configurable crypto-processor for

post-quantum lattice-based protocols. IACR Trans. Cryptog. Hardw. Embed. Syste. 2019, 4 (2019), 17–61. DOI:https://

doi.org/10.13154/tches.v2019.i4.17-61

[5] Paul Barrett. 1986. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard

digital signal processor. In Proceedings of the Conference on the Theory and Application of Cryptographic Techniques.

Springer, 311–323. DOI:https://doi.org/10.1007/3-540-47721-7_24

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/2724714
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.1007/3-540-47721-7_24

High-performance and Configurable SW/HW Co-design 44:27

[6] Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. 2021. High-performance hardware implementation of CRYSTALS-

Dilithium. In Proceedings of the International Conference on Field-Programmable Technology (ICFPT’21). 1–10.

DOI:https://doi.org/10.1109/ICFPT52863.2021.9609917

[7] Daniel J. Bernstein. 2009. Introduction to Post-quantum Cryptography. Springer, Berlin, 1–14. DOI:https://doi.org/10.

1007/978-3-540-88702-7_1

[8] Daniel J. Bernstein and Tanja Lange. 2017. Post-quantum cryptography. Nature 549, 7671 (2017), 188–194. DOI:https://

doi.org/10.1038/nature23461

[9] Denis Butin. 2017. Hash-based signatures: State of play. IEEE Secur. Priv. 15, 4 (2017), 37–43. DOI:https://doi.org/10.

1109/MSP.2017.3151334

[10] Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray C. C. Cheung, Derek Pao, and

Ingrid Verbauwhede. 2015. High-speed polynomial multiplication architecture for ring-LWE and SHE cryptosystems.

IEEE Trans. Circ. Syst. I: Reg. Papers 62, 1 (2015), 157–166. DOI:https://doi.org/10.1109/TCSI.2014.2350431

[11] James W. Cooley and John W. Tukey. 1965. An algorithm for the machine calculation of complex Fourier series. Math.

Comput. 19 (1965), 297–301. DOI:https://doi.org/10.1090/S0025-5718-1965-0178586-1

[12] Viet B. Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj. 2019. Implementing and benchmarking three

lattice-based post-quantum cryptography algorithms using software/hardware codesign. In Proceedings of the Inter-

national Conference on Field-Programmable Technology (ICFPT’19). 206–214. DOI:https://doi.org/10.1109/ICFPT47387.

2019.00032

[13] Jintai Ding and Bo-Yin Yang. 2009. Multivariate Public Key Cryptography. Springer, 193–241. DOI:https://doi.org/"10.

1007/978-3-540-88702-7_6

[14] Chaohui Du and Guoqiang Bai. 2016. Towards efficient polynomial multiplication for lattice-based cryptography.

In Proceedings of the IEEE International Symposium on Circuits and Systems. 1178–1181. DOI:https://doi.org/10.1109/

ISCAS.2016.7527456

[15] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. 2019. CRYSTALS-Dilithium–

Algorithm specifications and supporting documentation. NIST Post-quant. Cryptog. Standardiz. Round 2 (2019).

[16] Xiang Feng, Shuguo Li, and Sufen Xu. 2020. RLWE-oriented high-speed polynomial multiplier utilizing multi-lane

stockham NTT algorithm. IEEE Trans. Circ. Syst. II: Express Briefs 67, 3 (2020), 556–559. DOI:https://doi.org/10.1109/

TCSII.2019.2917621

[17] W. M. Gentleman and G. Sande. 1966. Fast fourier transforms: For fun and profit. In Proceedings of the Fall Joint

Computer Conference (AFIPS’66 (Fall)). Association for Computing Machinery, New York, NY, 563–578. DOI:https://

doi.org/10.1145/1464291.1464352

[18] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. 2020. Compact Dilithium implementations on

Cortex-M3 and Cortex-M4. IACR Trans. Cryptog. Hardw. Embed. Syste. 2021, 1 (Dec. 2020), 1–24. DOI:https://doi.org/

10.46586/tches.v2021.i1.1-24

[19] Naina Gupta, Arpan Jati, Anupam Chattopadhyay, and Gautam Jha. 2022. Lightweight Hardware Accelerator for

Post-quantum Digital Signature CRYSTALS-Dilithium. Cryptology ePrint Archive, Paper 2022/496. Retrieved from

https://eprint.iacr.org/2022/496.

[20] David Jao and Luca De Feo. 2011. Towards quantum-resistant cryptosystems from supersingular elliptic curve isoge-

nies. In Post-quantum Cryptography. Springer, Berlin, 19–34. DOI:https://doi.org/10.1007/978-3-642-25405-5_2

[21] J. Kokila, N. Ramasubramanian, and S. Indrajeet. 2016. A survey of hardware and software co-design issues for system

on chip design. In Advanced Computing and Communication Technologies. Springer, Singapore, 41–49. DOI:https://doi.

org/10.1007/978-981-10-1023-1_4

[22] Dur-e-Shahwar Kundi, Yuqing Zhang, Chenghua Wang, Ayesha Khalid, Maire O’Neill, and Weiqiang Liu. 2022. Ultra

high-speed polynomial multiplications for lattice-based cryptography on FPGAs. IEEE Trans. Emerg. Topics Comput.

(2022). DOI:https://doi.org/10.1109/TETC.2022.3144101

[23] Georg Land, Pascal Sasdrich, and Tim Güneysu. 2022. A hard crystal—Implementing Dilithium on reconfigurable

hardware. In Smart Card Research and Advanced Applications. Springer International Publishing, Cham, 210–230.

DOI:https://doi.org/10.1007/978-3-030-97348-3_12

[24] Adeline Langlois and Damien Stehlé. 2015. Worst-case to average-case reductions for module lattices. Des., Codes

Cryptog. 75, 3 (2015), 565–599. DOI:https://doi.org/10.1007/s10623-014-9938-4

[25] Patrick Longa and Michael Naehrig. 2016. Speeding up the number theoretic transform for faster ideal lattice-based

cryptography. In Cryptology and Network Security. Springer International Publishing, Cham, 124–139. DOI:https://

doi.org/10.1007/978-3-319-48965-0_8

[26] Vadim Lyubashevsky. 2009. Fiat-Shamir with Aborts: Applications to lattice and factoring-based signatures. In Pro-

ceedings of the Advances in CryptologyConference. Springer, Berlin, 598–616. DOI:https://doi.org/10.1007/978-3-642-

10366-7_35

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

https://doi.org/10.1109/ICFPT52863.2021.9609917
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1038/nature23461
https://doi.org/10.1109/MSP.2017.3151334
https://doi.org/10.1109/TCSI.2014.2350431
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1109/ICFPT47387.2019.00032
https://doi.org/"10.1007/978-3-540-88702-7_6
https://doi.org/10.1109/ISCAS.2016.7527456
https://doi.org/10.1109/TCSII.2019.2917621
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.46586/tches.v2021.i1.1-24
https://eprint.iacr.org/2022/496
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-981-10-1023-1_4
https://doi.org/10.1109/TETC.2022.3144101
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-10366-7_35

44:28 G. Mao et al.

[27] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. 2008. SWIFFT: A modest proposal for FFT

hashing. In Fast Software Encryption. Springer, Berlin, 54–72. DOI:https://doi.org/10.1007/978-3-540-71039-4_4

[28] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and learning with errors over rings. In

Proceedings of the Advances in Cryptology Conference. Springer, Berlin, 1–23. DOI:https://doi.org/10.1007/978-3-642-

13190-5_1

[29] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Sujoy Sinha Roy, and Ingrid Verbauwhede.

2020. Compact domain-specific co-processor for accelerating module lattice-based KEM. In Proceedings of the 57th

ACM/IEEE Design Automation Conference (DAC’20). 1–6. DOI:https://doi.org/10.1109/DAC18072.2020.9218727

[30] Daniele Micciancio and Oded Regev. 2009. Lattice-based Cryptography. Springer, 147–191. DOI:https://doi.org/10.1007/

978-3-540-88702-7_5

[31] Peter L. Montgomery. 1985. Modular multiplication without trial division. Math. Computat. 44, 170 (1985), 519–521.

DOI:https://doi.org/10.1090/S0025-5718-1985-0777282-X

[32] OpenCores. 2018. SHA3 (KECCAK). Retrieved from https://opencores.org/projects/sha3.

[33] Raphael Overbeck and Nicolas Sendrier. 2009. Code-based Cryptography. Springer, Berlin, 95–145. DOI:https://doi.org/

"10.1007/978-3-540-88702-7_4

[34] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-performance ideal lattice-based cryptography on

8-bit ATxmega microcontrollers. In Proceedings of the Progress in Cryptology Conference. Springer International Pub-

lishing, Cham, 346–365. DOI:https://doi.org/10.1007/978-3-319-22174-8_19

[35] I. Reed and Treiu-Kien Truong. 1975. The use of finite fields to compute convolutions. IEEE Trans. Inf. Theor. 21, 2

(1975), 208–213. DOI:https://doi.org/10.1109/TIT.1975.1055352

[36] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the 37th

Annual ACM Symposium on Theory of Computing (STOC’05). Association for Computing Machinery, New York, NY,

84–93. DOI:https://doi.org/10.1145/1060590.1060603

[37] Sara Ricci, Lukas Malina, Petr Jedlicka, David Smékal, Jan Hajny, Peter Cibik, Petr Dzurenda, and Patrik Dobias. 2021.

Implementing CRYSTALS-Dilithium signature scheme on FPGAs. In Proceedings of the 16th International Conference

on Availability, Reliability and Security (ARES’21). Association for Computing Machinery, New York, NY. DOI:https://

doi.org/10.1145/3465481.3465756

[38] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede. 2014. Com-

pact ring-LWE cryptoprocessor. In Proceedings of the Conference on Cryptographic Hardware and Embedded Systems.

Springer, Berlin, 371–391. DOI:https://doi.org/10.1007/978-3-662-44709-3_21

[39] Michael Scott. 2017. A note on the implementation of the number theoretic transform. In Cryptography and Coding.

Springer International Publishing, Cham, 247–258. DOI:https://doi.org/10.1007/978-3-319-71045-7_13

[40] P. W. Shor. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th

Annual Symposium on Foundations of Computer Science. IEEE, 124–134. DOI:https://doi.org/10.1109/SFCS.1994.365700

[41] Deepraj Soni, Kanad Basu, Mohammed Nabeel, and Ramesh Karri. 2019. A hardware evaluation study of

NIST post-quantum cryptographic signature schemes. In Proceedings of the 2nd PQC Standardization Con-

ference. NIST. Retrieved from https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/

documents/accepted-papers/soni-hardware-evaluation.pdf.

[42] Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa, and Jakub Szefer. 2020. Parameterized hard-

ware accelerators for lattice-based cryptography and their application to the HW/SW co-design of qTESLA. IACR

Trans. Cryptog. Hardw. Embed. Syste. 2020, 3 (June 2020), 269–306. DOI:https://doi.org/10.13154/tches.v2020.i3.269-306

[43] Kan Yao, Dur-E-Shahwar Kundi, Chenghua Wang, Maire O’Neill, and Weiqiang Liu. 2021. Towards CRYSTALS-Kyber:

A M-LWE cryptoprocessor with area-time tradeoff. In Proceedings of the IEEE International Symposium on Circuits and

Systems. 1–5. DOI:https://doi.org/10.1109/ISCAS51556.2021.9401253

[44] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo Liu. 2020. Highly efficient architecture of

NewHope-NIST on FPGA using low-complexity NTT/INTT. IACR Trans. Cryptog. Hardw. Embed. Syste. 2020, 2 (Mar.

2020), 49–72. DOI:https://doi.org/10.13154/tches.v2020.i2.49-72

[45] Xin Zheng, Chongyao Xu, Xianghong Hu, Yun Zhang, and Xiaoming Xiong. 2020. The software/hardware co-design

and implementation of SM2/3/4 encryption/decryption and digital signature system. IEEE Trans. Comput.-aid. Des.

Integ. Circ. Syst. 39, 10 (2020), 2055–2066. DOI:https://doi.org/10.1109/TCAD.2019.2939330

[46] Zhen Zhou, Debiao He, Zhe Liu, Min Luo, and Kim-Kwang Raymond Choo. 2021. A software/hardware co-design of

CRYSTALS-Dilithium signature scheme. ACM Trans. Reconfig. Technol. Syst. 14, 2 (June 2021). DOI:https://doi.org/10.

1145/3447812

Received 17 June 2022; revised 7 October 2022; accepted 9 October 2022

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 44. Publication date: June 2023.

https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1109/DAC18072.2020.9218727
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://opencores.org/projects/sha3
https://doi.org/"10.1007/978-3-540-88702-7_4
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1109/TIT.1975.1055352
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/3465481.3465756
https://doi.org/10.1007/978-3-662-44709-3_21
https://doi.org/10.1007/978-3-319-71045-7_13
https://doi.org/10.1109/SFCS.1994.365700
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/soni-hardware-evaluation.pdf
https://doi.org/10.13154/tches.v2020.i3.269-306
https://doi.org/10.1109/ISCAS51556.2021.9401253
https://doi.org/10.13154/tches.v2020.i2.49-72
https://doi.org/10.1109/TCAD.2019.2939330
https://doi.org/10.1145/3447812

